El-Gendy Dalia M, Abdel Ghany Nabil A, Allam Nageh K
Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
Physical Chemistry Department, National Research Centre Dokki Cairo 12622 Egypt
RSC Adv. 2019 Apr 23;9(22):12555-12566. doi: 10.1039/c9ra01539f. eCollection 2019 Apr 17.
A simple method is demonstrated to prepare functionalized spongy graphene/hydrogenated titanium dioxide (FG-HTiO) nanocomposites as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such a 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated FG-HTiO was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV-Vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M HSO using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The FG-HTiO electrodes showed a maximum specific capacitance of 401 F g at a scan rate of 1 mV s and exhibited excellent cycling retention of 102% after 1000 cycles at 100 mV s. The energy density was 78.66 W h kg with a power density of 466.9 W kg at 0.8 A g. The improved supercapacitor performance could be attributed to the spongy graphene structure, adenine functionalization, and hydrogenated titanium dioxide.
展示了一种制备功能化海绵状石墨烯/氢化二氧化钛(FG-HTiO)纳米复合材料的简单方法,该复合材料为相互连接的多孔三维(3D)网络状褶皱片材。这种3D网络结构在电极/电解质界面提供了更好的接触,并促进了电荷转移动力学。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(FESEM)、拉曼光谱、热重分析(TGA)、紫外-可见吸收光谱和透射电子显微镜(TEM)对制备的FG-HTiO进行了表征。使用循环伏安法(CV)在不同的电位扫描速率下以及在不同电流密度下进行恒电流充放电测试,对合成材料作为超级电容器材料进行了评估。FG-HTiO电极在扫描速率为1 mV s时显示出最大比电容为401 F g,并且在100 mV s下1000次循环后表现出102%的优异循环保持率。在0.8 A g时,能量密度为78.66 W h kg,功率密度为466.9 W kg。超级电容器性能的提高可归因于海绵状石墨烯结构、腺嘌呤功能化和氢化二氧化钛。