Suppr超能文献

联合瘤周放射组学和临床特征可预测胶质母细胞瘤的12个月无进展生存期。

Combined peritumoral radiomics and clinical features predict 12-month progression free survival in glioblastoma.

作者信息

Yun Yeong Chul, Jende Johann M E, Garhöfer Freya, Wolf Sabine, Holz Katharina, Hohmann Anja, Vollmuth Philipp, Bendszus Martin, Schlemmer Heinz-Peter, Sahm Felix, Heiland Sabine, Wick Wolfgang, Venkataramani Varun, Kurz Felix T

机构信息

Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany.

Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

J Neurooncol. 2025 Apr 17. doi: 10.1007/s11060-025-05037-6.

Abstract

PURPOSE

Analyzing post-treatment MRIs from glioblastoma patients can be challenging due to similar radiological presentations of disease progression and treatment effects. Identifying radiomics features (RFs) revealing progressive glioblastoma can contribute to an improved evaluation of the response assessment.

METHODS

3 Tesla MRI data from 560 glioblastoma patients (mean age 58.1 years) after treatment according to Stupp's protocol were analyzed retrospectively. A total of 418 RFs were extracted from contrast-enhancing tumors, non-enhancing lesions, peritumoral regions (PeriCET) and normal-appearing white matter as regions of interest using PyRadiomics. Dataset was initially split into a training (70%) and a validation (30%) cohort. The training cohort was used for feature selection and model-optimization. Logistic regression was used as a machine-learning model to identify patients with progression-free survival (PFS) as defined by the RANO criteria at 6 and 12 months after treatment. Models were trained with (i) clinical features only, (ii) RFs only, and (iii) a combination of clinical and radiomics features. The performance of each model was evaluated with the validation cohort.

RESULTS

The predictive performances of the model trained with only RFs from the PeriCET were AUC = 0.61 (95%-CI: 0.51-0.70) and AUC = 0.71 (95%-CI: 0.61-0.81) for 6-months and 12-months PFS respectively. Combining clinical and RFs from PeriCET resulted in overall best performance in predicting patients with progression within 12-months AUC = 0.75 (95%-CI: 0.65-0.85).

CONCLUSION

RFs from peritumoral region combined with clinical features including age, sex, and MGMT status can identify patients with 12-months PFS, suggesting the important role of peritumoral regions for the progression of glioblastoma.

摘要

目的

由于疾病进展和治疗效果的影像学表现相似,分析胶质母细胞瘤患者的治疗后磁共振成像(MRI)具有挑战性。识别能够揭示进展性胶质母细胞瘤的放射组学特征(RFs)有助于改进反应评估。

方法

回顾性分析了560例胶质母细胞瘤患者(平均年龄58.1岁)按照Stupp方案治疗后的3特斯拉MRI数据。使用PyRadiomics从增强肿瘤、非增强病变、瘤周区域(PeriCET)和正常白质作为感兴趣区域中提取了总共418个RFs。数据集最初分为训练组(70%)和验证组(30%)。训练组用于特征选择和模型优化。使用逻辑回归作为机器学习模型来识别治疗后6个月和12个月时符合RANO标准定义的无进展生存期(PFS)的患者。模型分别使用(i)仅临床特征、(ii)仅RFs以及(iii)临床和放射组学特征的组合进行训练。每个模型的性能通过验证组进行评估。

结果

仅使用PeriCET的RFs训练的模型在预测6个月和12个月PFS时的预测性能分别为AUC = 0.61(95%置信区间:0.51 - 0.70)和AUC = 0.71(95%置信区间:0.61 - 0.81)。将临床特征与PeriCET的RFs相结合在预测12个月内进展的患者时总体表现最佳,AUC = 0.75(95%置信区间:0.65 - 0.85)。

结论

瘤周区域的RFs与包括年龄、性别和MGMT状态在内的临床特征相结合可以识别出具有12个月PFS的患者,表明瘤周区域在胶质母细胞瘤进展中具有重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验