Suppr超能文献

三维基质中后部肌动球蛋白收缩性驱动的定向细胞迁移:一种机械化学偶联机制

Rear actomyosin contractility-driven directional cell migration in three-dimensional matrices: a mechano-chemical coupling mechanism.

作者信息

Chi Qingjia, Yin Tieying, Gregersen Hans, Deng Xiaoyan, Fan Yubo, Zhao Jingbo, Liao Donghua, Wang Guixue

机构信息

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education; Chongqing Engineering Laboratory in Vascular Implants; Bioengineering College of Chongqing University, , Chongqing, People's Republic of China.

出版信息

J R Soc Interface. 2014 Mar 19;11(95):20131072. doi: 10.1098/rsif.2013.1072. Print 2014 Jun 6.

Abstract

Cell migration is of vital importance in many biological processes, including organismal development, immune response and development of vascular diseases. For instance, migration of vascular smooth muscle cells from the media to intima is an essential part of the development of atherosclerosis and restenosis after stent deployment. While it is well characterized that cells use actin polymerization at the leading edge to propel themselves to move on two-dimensional substrates, the migration modes of cells in three-dimensional matrices relevant to in vivo environments remain unclear. Intracellular tension, which is created by myosin II activity, fulfils a vital role in regulating cell migration. We note that there is compelling evidence from theoretical and experimental work that myosin II accumulates at the cell rear, either isoform-dependent or -independent, leading to three-dimensional migration modes driven by posterior myosin II tension. The scenario is not limited to amoeboid migration, and it is also seen in mesenchymal migration in which a two-dimensional-like migration mode based on front protrusions is often expected, suggesting that there may exist universal underlying mechanisms. In this review, we aim to shed some light on how anisotropic myosin II localization induces cell motility in three-dimensional environments from a biomechanical view. We demonstrate an interesting mechanism where an interplay between mechanical myosin II recruitment and biochemical myosin II activation triggers directional migration in three-dimensional matrices. In the case of amoeboid three-dimensional migration, myosin II first accumulates at the cell rear to induce a slight polarization displayed as a uropod-like structure under the action of a tension-dependent mechanism. Subsequent biochemical signalling pathways initiate actomyosin contractility, producing traction forces on the adhesion system or creating prominent motile forces through blebbing activity, to drive cells to move. In mesenchymal three-dimensional migration, cells can also take advantage of the elastic properties of three-dimensional matrices to move. A minor myosin isoform, myosin IIB, is retained by relatively stiff three-dimensional matrices at the posterior side, then activated by signalling cascades, facilitating prominent cell polarization by establishing front-back polarity and creating cell rear. Myosin IIB initiates cell polarization and coordinates with the major isoform myosin IIA-assembled stress fibres, to power the directional migration of cells in the three-dimensional matrix.

摘要

细胞迁移在许多生物学过程中至关重要,包括机体发育、免疫反应以及血管疾病的发展。例如,血管平滑肌细胞从血管中膜迁移至内膜是动脉粥样硬化和支架植入后再狭窄发展的重要环节。虽然细胞利用前沿的肌动蛋白聚合在二维基质上推动自身移动已得到充分表征,但与体内环境相关的三维基质中细胞的迁移模式仍不清楚。由肌球蛋白II活性产生的细胞内张力在调节细胞迁移中起着至关重要的作用。我们注意到,理论和实验工作有令人信服的证据表明,肌球蛋白II在细胞后部积累,无论是同工型依赖性还是非依赖性,都会导致由后部肌球蛋白II张力驱动的三维迁移模式。这种情况不仅限于阿米巴样迁移,在间充质迁移中也可见,其中通常预期基于前端突起的类似二维的迁移模式,这表明可能存在普遍的潜在机制。在本综述中,我们旨在从生物力学角度阐明各向异性的肌球蛋白II定位如何在三维环境中诱导细胞运动。我们展示了一种有趣的机制,即机械性肌球蛋白II募集和生化性肌球蛋白II激活之间的相互作用触发了三维基质中的定向迁移。在阿米巴样三维迁移的情况下,肌球蛋白II首先在细胞后部积累,以在张力依赖性机制的作用下诱导轻微极化,表现为尾足样结构。随后的生化信号通路启动肌动球蛋白收缩性,在黏附系统上产生牵引力或通过气泡活动产生突出的运动力,以驱动细胞移动。在间充质三维迁移中,细胞也可利用三维基质的弹性特性移动。一种次要的肌球蛋白同工型,即肌球蛋白IIB,被相对较硬的三维基质保留在细胞后部,然后通过信号级联反应激活,通过建立前后极性和形成细胞后部来促进明显的细胞极化。肌球蛋白IIB启动细胞极化并与主要同工型肌球蛋白IIA组装的应力纤维协调,为细胞在三维基质中的定向迁移提供动力。

相似文献

1
Rear actomyosin contractility-driven directional cell migration in three-dimensional matrices: a mechano-chemical coupling mechanism.
J R Soc Interface. 2014 Mar 19;11(95):20131072. doi: 10.1098/rsif.2013.1072. Print 2014 Jun 6.
2
3
Rear-polarized Wnt5a-receptor-actin-myosin-polarity (WRAMP) structures promote the speed and persistence of directional cell migration.
Mol Biol Cell. 2017 Jul 7;28(14):1924-1936. doi: 10.1091/mbc.E16-12-0875. Epub 2017 Jun 7.
4
Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells.
J Cell Biol. 2011 Apr 18;193(2):381-96. doi: 10.1083/jcb.201012159. Epub 2011 Apr 11.
5
Segregation and activation of myosin IIB creates a rear in migrating cells.
J Cell Biol. 2008 Nov 3;183(3):543-54. doi: 10.1083/jcb.200806030. Epub 2008 Oct 27.
6
Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts.
Biochem Biophys Res Commun. 2018 Mar 25;498(1):25-31. doi: 10.1016/j.bbrc.2018.02.171. Epub 2018 Feb 24.
7
Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration.
Curr Biol. 2012 Mar 6;22(5):363-72. doi: 10.1016/j.cub.2012.01.037. Epub 2012 Feb 9.
9
Reciprocal regulation of actomyosin organization and contractility in nonmuscle cells by tropomyosins and alpha-actinins.
Mol Biol Cell. 2019 Jul 22;30(16):2025-2036. doi: 10.1091/mbc.E19-02-0082. Epub 2019 Jun 19.
10
ZIPK is critical for the motility and contractility of VSMCs through the regulation of nonmuscle myosin II isoforms.
Am J Physiol Heart Circ Physiol. 2014 May;306(9):H1275-86. doi: 10.1152/ajpheart.00289.2013. Epub 2014 Mar 14.

引用本文的文献

3
Random walk and cell morphology dynamics in .
Front Cell Dev Biol. 2023 Nov 1;11:1274127. doi: 10.3389/fcell.2023.1274127. eCollection 2023.
4
The multifaceted role of aquaporins in physiological cell migration.
Am J Physiol Cell Physiol. 2023 Jul 1;325(1):C208-C223. doi: 10.1152/ajpcell.00502.2022. Epub 2023 May 29.
5
On the role of myosin-induced actin depolymerization during cell migration.
Mol Biol Cell. 2023 May 15;34(6):ar62. doi: 10.1091/mbc.E22-10-0494. Epub 2023 Mar 29.
6
Non-muscle myosin II and the plasticity of 3D cell migration.
Front Cell Dev Biol. 2022 Nov 10;10:1047256. doi: 10.3389/fcell.2022.1047256. eCollection 2022.
8
Pressure Drives Rapid Burst-Like Coordinated Cellular Motion from 3D Cancer Aggregates.
Adv Sci (Weinh). 2022 Feb;9(6):e2104808. doi: 10.1002/advs.202104808. Epub 2022 Jan 7.
10

本文引用的文献

1
Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding.
J R Soc Interface. 2013 Oct 23;11(90):20130852. doi: 10.1098/rsif.2013.0852. Print 2014 Jan 6.
2
Integrins-FAK-Rho GTPases pathway in endothelial cells sense and response to surface wettability of plasma nanocoatings.
ACS Appl Mater Interfaces. 2013 Jun 12;5(11):5112-21. doi: 10.1021/am400973a. Epub 2013 May 15.
3
Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1361-70. doi: 10.1073/pnas.1220723110. Epub 2013 Mar 20.
6
At the leading edge of three-dimensional cell migration.
J Cell Sci. 2012 Dec 15;125(Pt 24):5917-26. doi: 10.1242/jcs.093732. Epub 2013 Feb 1.
7
Cell polarity: mechanochemical patterning.
Trends Cell Biol. 2013 Feb;23(2):72-80. doi: 10.1016/j.tcb.2012.10.009. Epub 2012 Nov 23.
8
Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain.
J Cell Biol. 2012 Nov 12;199(4):669-83. doi: 10.1083/jcb.201205056. Epub 2012 Nov 5.
9
LDL decreases the membrane compliance and cell adhesion of endothelial cells under fluid shear stress.
Ann Biomed Eng. 2013 Mar;41(3):611-8. doi: 10.1007/s10439-012-0677-2. Epub 2012 Oct 18.
10
OxLDL stimulates Id1 nucleocytoplasmic shuttling in endothelial cell angiogenesis via PI3K pathway.
Biochim Biophys Acta. 2012 Oct;1821(10):1361-9. doi: 10.1016/j.bbalip.2012.07.016. Epub 2012 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验