Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany.
ISME J. 2011 Dec;5(12):1957-68. doi: 10.1038/ismej.2011.68. Epub 2011 Jun 9.
Bacterial aerobic anoxygenic photosynthesis (AAP) is an important mechanism of energy generation in aquatic habitats, accounting for up to 5% of the surface ocean's photosynthetic electron transport. We used Dinoroseobacter shibae, a representative of the globally abundant marine Roseobacter clade, as a model organism to study the transcriptional response of a photoheterotrophic bacterium to changing light regimes. Continuous cultivation of D. shibae in a chemostat in combination with time series microarray analysis was used in order to identify gene-regulatory patterns after switching from dark to light and vice versa. The change from heterotrophic growth in the dark to photoheterotrophic growth in the light was accompanied by a strong but transient activation of a broad stress response to the formation of singlet oxygen, an immediate downregulation of photosynthesis-related genes, fine-tuning of the expression of ETC components, as well as upregulation of the transcriptional and translational apparatus. Furthermore, our data suggest that D. shibae might use the 3-hydroxypropionate cycle for CO(2) fixation. Analysis of the transcriptome dynamics after switching from light to dark showed relatively small changes and a delayed activation of photosynthesis gene expression, indicating that, except for light other signals must be involved in their regulation. Providing the first analysis of AAP on the level of transcriptome dynamics, our data allow the formulation of testable hypotheses on the cellular processes affected by AAP and the mechanisms involved in light- and stress-related gene regulation.
细菌需氧厌氧光合作用(AAP)是水生栖息地能量产生的重要机制,占海洋表面光合作用电子传递的 5%。我们使用代表全球丰富海洋玫瑰杆菌群的Dinoroseobacter shibae 作为模型生物,研究了一种光异养细菌对不断变化的光照条件的转录反应。通过连续培养在恒化器中的 D. shibae,并结合时间序列微阵列分析,以确定从黑暗到光照和反之的切换后的基因调控模式。从黑暗中的异养生长转变为光照下的光异养生长伴随着强烈但短暂的激活广泛的应激反应,以形成单线态氧,光合作用相关基因的立即下调,ETC 成分的精细调节,以及转录和翻译装置的上调。此外,我们的数据表明,D. shibae 可能使用 3-羟基丙酸循环进行 CO2 固定。分析从光照到黑暗的转录组动力学变化显示相对较小的变化和光合作用基因表达的延迟激活,表明除了光之外,其他信号必须参与它们的调节。提供了对转录组动力学水平上的 AAP 的首次分析,我们的数据允许对受 AAP 影响的细胞过程和涉及光和应激相关基因调节的机制提出可测试的假设。