Suppr超能文献

预测甲基转移酶底物特异性的概率方法。

Probabilistic approach to predicting substrate specificity of methyltransferases.

作者信息

Szczepińska Teresa, Kutner Jan, Kopczyński Michał, Pawłowski Krzysztof, Dziembowski Andrzej, Kudlicki Andrzej, Ginalski Krzysztof, Rowicka Maga

机构信息

Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.

Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland.

出版信息

PLoS Comput Biol. 2014 Mar 20;10(3):e1003514. doi: 10.1371/journal.pcbi.1003514. eCollection 2014 Mar.

Abstract

We present a general probabilistic framework for predicting the substrate specificity of enzymes. We designed this approach to be easily applicable to different organisms and enzymes. Therefore, our predictive models do not rely on species-specific properties and use mostly sequence-derived data. Maximum Likelihood optimization is used to fine-tune model parameters and the Akaike Information Criterion is employed to overcome the issue of correlated variables. As a proof-of-principle, we apply our approach to predicting general substrate specificity of yeast methyltransferases (MTases). As input, we use several physico-chemical and biological properties of MTases: structural fold, isoelectric point, expression pattern and cellular localization. Our method accurately predicts whether a yeast MTase methylates a protein, RNA or another molecule. Among our experimentally tested predictions, 89% were confirmed, including the surprising prediction that YOR021C is the first known MTase with a SPOUT fold that methylates a substrate other than RNA (protein). Our approach not only allows for highly accurate prediction of functional specificity of MTases, but also provides insight into general rules governing MTase substrate specificity.

摘要

我们提出了一个用于预测酶底物特异性的通用概率框架。我们设计的这种方法易于应用于不同的生物体和酶。因此,我们的预测模型不依赖于物种特异性属性,且大多使用序列衍生数据。采用最大似然优化来微调模型参数,并使用赤池信息准则来克服相关变量的问题。作为原理验证,我们将我们的方法应用于预测酵母甲基转移酶(MTases)的一般底物特异性。作为输入,我们使用了MTases的几种物理化学和生物学特性:结构折叠、等电点、表达模式和细胞定位。我们的方法准确地预测了酵母MTase是否会使蛋白质、RNA或其他分子甲基化。在我们经过实验测试的预测中,89%得到了证实,其中包括一个令人惊讶的预测,即YOR021C是第一个已知的具有SPOUT折叠且能使RNA以外的底物(蛋白质)甲基化的MTase。我们的方法不仅能够高度准确地预测MTases的功能特异性,还能深入了解支配MTase底物特异性的一般规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e087/3961171/ac7dc5d359d6/pcbi.1003514.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验