Suppr超能文献

利用基因表达数据预测蛋白质组动态。

Predicting proteome dynamics using gene expression data.

机构信息

Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089, Warsaw, Poland.

Department of Biochemistry and Molecular Biology, Institute for Translational Sciences, and Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.

出版信息

Sci Rep. 2018 Sep 14;8(1):13866. doi: 10.1038/s41598-018-31752-4.

Abstract

While protein concentrations are physiologically most relevant, measuring them globally is challenging. mRNA levels are easier to measure genome-wide and hence are typically used to infer the corresponding protein abundances. The steady-state condition (assumption that protein levels remain constant) has typically been used to calculate protein concentrations, as it is mathematically convenient, even though it is often not satisfied. Here, we propose a method to estimate genome-wide protein abundances without this assumption. Instead, we assume that the system returns to its baseline at the end of the experiment, which is true for cyclic phenomena (e.g. cell cycle) and many time-course experiments. Our approach only requires availability of gene expression and protein half-life data. As proof-of-concept, we predicted proteome dynamics associated with the budding yeast cell cycle, the results are available for browsing online at http://dynprot.cent.uw.edu.pl/ . The approach was validated experimentally by verifying that the predicted protein concentration changes were consistent with measurements for all proteins tested. Additionally, if proteomic data are available as well, we can also infer changes in protein half-lives in response to posttranslational regulation, as we did for Clb2, a post-translationally regulated protein. The predicted changes in Clb2 abundance are consistent with earlier observations.

摘要

虽然蛋白质浓度在生理上是最相关的,但全面测量它们具有挑战性。mRNA 水平更容易在全基因组范围内测量,因此通常用于推断相应的蛋白质丰度。稳态条件(假设蛋白质水平保持不变)通常用于计算蛋白质浓度,因为它在数学上很方便,尽管它通常不满足。在这里,我们提出了一种不做此假设即可估算全基因组蛋白质丰度的方法。相反,我们假设系统在实验结束时会回到基线,对于周期性现象(例如细胞周期)和许多时间过程实验,这是正确的。我们的方法仅需要基因表达和蛋白质半衰期数据的可用性。作为概念验证,我们预测了与 budding 酵母细胞周期相关的蛋白质组动力学,结果可在 http://dynprot.cent.uw.edu.pl/ 上在线浏览。该方法通过验证所有测试蛋白质的预测蛋白浓度变化与测量结果一致,从实验上得到了验证。此外,如果也有蛋白质组学数据,我们还可以推断翻译后调控对蛋白质半衰期变化的影响,就像我们对 Clb2 这样的翻译后调控蛋白所做的那样。Clb2 丰度的预测变化与早期观察结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa2/6138643/d04d3ea8ac06/41598_2018_31752_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验