Suppr超能文献

一种用于估计呼吸道病毒疾病负担的稳健参数估计方法。

A robust parameter estimation method for estimating disease burden of respiratory viruses.

作者信息

Chan King Pan, Wong Chit Ming, Chiu Susan S S, Chan Kwok Hung, Wang Xi Ling, Chan Eunice L Y, Peiris J S Malik, Yang Lin

机构信息

School of Publish Health, The University of Hong Kong, Hong Kong Special Administrative Region, China.

Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.

出版信息

PLoS One. 2014 Mar 20;9(3):e90126. doi: 10.1371/journal.pone.0090126. eCollection 2014.

Abstract

BACKGROUND

Poisson model has been widely applied to estimate the disease burden of influenza, but there has been little success in providing reliable estimates for other respiratory viruses.

METHODS

We compared the estimates of excess hospitalization rates derived from the Poisson models with different combinations of inference methods and virus proxies respectively, with the aim to determine the optimal modeling approach. These models were validated by comparing the estimates of excess hospitalization attributable to respiratory viruses with the observed rates of laboratory confirmed paediatric hospitalization for acute respiratory infections obtained from a population based study.

RESULTS

The Bayesian inference method generally outperformed the classical likelihood estimation, particularly for RSV and parainfluenza, in terms of providing estimates closer to the observed hospitalization rates. Compared to the other proxy variables, age-specific positive counts provided better estimates for influenza, RSV and parainfluenza, regardless of inference methods. The Bayesian inference combined with age-specific positive counts also provided valid and reliable estimates for excess hospitalization associated with multiple respiratory viruses in both the 2009 H1N1 pandemic and interpandemic period.

CONCLUSIONS

Poisson models using the Bayesian inference method and virus proxies of age-specific positive counts should be considered in disease burden studies on multiple respiratory viruses.

摘要

背景

泊松模型已被广泛应用于估计流感的疾病负担,但在为其他呼吸道病毒提供可靠估计方面成效甚微。

方法

我们分别比较了泊松模型采用不同推理方法和病毒替代指标组合得出的超额住院率估计值,目的是确定最佳建模方法。通过将呼吸道病毒所致超额住院率估计值与基于人群研究获得的实验室确诊的儿童急性呼吸道感染住院观察率进行比较,对这些模型进行验证。

结果

在提供更接近观察住院率的估计值方面,贝叶斯推理方法总体上优于经典似然估计,尤其是对于呼吸道合胞病毒(RSV)和副流感病毒。与其他替代变量相比,特定年龄阳性计数对流感、RSV和副流感病毒能提供更好的估计值,无论采用何种推理方法。在2009年甲型H1N1流感大流行期间和大流行间期,贝叶斯推理与特定年龄阳性计数相结合,也为多种呼吸道病毒相关的超额住院提供了有效且可靠的估计值。

结论

在多种呼吸道病毒的疾病负担研究中,应考虑使用贝叶斯推理方法和特定年龄阳性计数作为病毒替代指标的泊松模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af8/3961249/d8dd35ad53e5/pone.0090126.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验