Suppr超能文献

脑电图电极位置误差对最终波束形成源重建性能的影响。

Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance.

机构信息

Zukunftskolleg and Department of Psychology, University of Konstanz Konstanz, Germany.

Department of Neurology, Epilepsy Center, University Hospital Erlangen Erlangen, Germany.

出版信息

Front Neurosci. 2014 Mar 11;8:42. doi: 10.3389/fnins.2014.00042. eCollection 2014.

Abstract

Inaccuracy of EEG electrode coordinates forms an error term in forward model generation and ultimate source reconstruction performance. This error arises from the combination of both intrinsic measurement noise of the digitization apparatus and manual coregistration error when selecting corresponding points on anatomical MRI volumes. A common assumption is that such an error would lead only to displacement of localized sources. Here, we measured electrode positions on a 3D-printed full-scale replica head, using three different techniques: a fringe projection 3D scanner, a novel "Flying Triangulation" 3D sensor, and a traditional electromagnetic digitizer. Using highly accurate fringe projection data as ground truth, the Flying Triangulation sensor had a mean error of 1.5 mm while the electromagnetic digitizer had a mean error of 6.8 mm. Then, again using the fringe projection as ground truth, individual EEG simulations were generated, with source locations across the brain space and a range of sensor noise levels. The simulated datasets were then processed using a beamformer in conjunction with the electrode coordinates registered with the Flying Triangulation and electromagnetic digitizer methods. The beamformer's output SNR was severely degraded with the digitizer-based positions but less severely with the Flying Triangulation coordinates. Therefore, the seemingly innocuous error in electrode registration may result in substantial degradation of beamformer performance, with output SNR penalties up to several decibels. In the case of low-SNR signals such as deeper brain structures or gamma band sources, this implies that sensor coregistration accuracy could make the difference between successful detection of such activity or complete failure to resolve the source.

摘要

脑电图电极坐标的不准确性会在正向模型生成和最终源重建性能中形成误差项。这种误差源于数字化设备的固有测量噪声和在选择解剖 MRI 容积上对应点时的手动配准误差的组合。一个常见的假设是,这种误差只会导致局部源的位移。在这里,我们使用三种不同的技术测量了 3D 打印全尺寸复制品头部上的电极位置:一种是条纹投影 3D 扫描仪,一种是新型的“飞行三角测量”3D 传感器,另一种是传统的电磁数字化仪。使用高度精确的条纹投影数据作为基准,“飞行三角测量”传感器的平均误差为 1.5 毫米,而电磁数字化仪的平均误差为 6.8 毫米。然后,再次使用条纹投影作为基准,生成了个体 EEG 模拟,源位置跨越大脑空间,并具有一系列传感器噪声水平。然后使用波束形成器结合使用“飞行三角测量”和电磁数字化仪方法注册的电极坐标处理模拟数据集。与基于数字化仪的位置相比,波束形成器的输出 SNR 严重降低,但与“飞行三角测量”坐标相比,降低程度较小。因此,电极注册中的看似微不足道的误差可能会导致波束形成器性能严重下降,输出 SNR 降低高达几个分贝。在低 SNR 信号的情况下,例如较深的脑结构或伽马波段源,这意味着传感器配准精度可能会成为成功检测此类活动或完全无法解析源的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7285/3949288/11f7d81681b0/fnins-08-00042-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验