Garcia Benjamin, Datta Gargi, Cosgrove Gregory P, Strong Michael
Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA.
BMC Syst Biol. 2014 Mar 22;8:34. doi: 10.1186/1752-0509-8-34.
Although respiratory diseases exhibit in a wide array of clinical manifestations, certain respiratory diseases may share related genetic mechanisms or may be influenced by similar chemical stimuli. Here we explore and infer relationships among genes, diseases, and chemicals using network and matrix based clustering methods.
In order to better understand and elucidate these shared genetic mechanisms and chemical relationships we analyzed a comprehensive collection of gene, disease, and chemical relationships pertinent to respiratory disease, using network and matrix based analysis approaches. Our methods enabled us to analyze relationships and make biological inferences among over 200 different respiratory and related diseases, involving thousands of gene-chemical-disease relationships.
The resulting networks provided insight into shared mechanisms of respiratory disease and in some cases suggest novel targets or repurposed drug strategies.
尽管呼吸系统疾病表现出多种多样的临床表现,但某些呼吸系统疾病可能共享相关的遗传机制,或者可能受到相似化学刺激的影响。在此,我们使用基于网络和矩阵的聚类方法来探索和推断基因、疾病和化学物质之间的关系。
为了更好地理解和阐明这些共享的遗传机制和化学物质关系,我们使用基于网络和矩阵的分析方法,分析了与呼吸系统疾病相关的基因、疾病和化学物质关系的综合数据集。我们的方法使我们能够分析200多种不同的呼吸系统及相关疾病之间的关系,涉及数千种基因-化学物质-疾病关系。
所得网络为呼吸系统疾病的共享机制提供了见解,在某些情况下还提出了新的靶点或药物重新利用策略。