Suppr超能文献

基因调控网络的监督式、半监督式和无监督式推理

Supervised, semi-supervised and unsupervised inference of gene regulatory networks.

作者信息

Maetschke Stefan R, Madhamshettiwar Piyush B, Davis Melissa J, Ragan Mark A

机构信息

Institute for Molecular Bioscience and ARC Centre of Excellence in Bioinformatics, Brisbane, QLD 4072, Australia, Tel.: 61 7 3346 2616; Fax: 61 7 3346 2101;

出版信息

Brief Bioinform. 2014 Mar;15(2):195-211. doi: 10.1093/bib/bbt034. Epub 2013 May 21.

Abstract

Inference of gene regulatory network from expression data is a challenging task. Many methods have been developed to this purpose but a comprehensive evaluation that covers unsupervised, semi-supervised and supervised methods, and provides guidelines for their practical application, is lacking. We performed an extensive evaluation of inference methods on simulated and experimental expression data. The results reveal low prediction accuracies for unsupervised techniques with the notable exception of the Z-SCORE method on knockout data. In all other cases, the supervised approach achieved the highest accuracies and even in a semi-supervised setting with small numbers of only positive samples, outperformed the unsupervised techniques.

摘要

从表达数据推断基因调控网络是一项具有挑战性的任务。为此已经开发了许多方法,但缺乏涵盖无监督、半监督和监督方法的全面评估,也没有为它们的实际应用提供指导方针。我们对模拟和实验表达数据的推断方法进行了广泛评估。结果表明,无监督技术的预测准确率较低,但Z-SCORE方法在基因敲除数据上是个显著例外。在所有其他情况下,监督方法实现了最高准确率,即使在只有少量正样本的半监督设置中,也优于无监督技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0318/3956069/c01ec91f0c5c/bbt034f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验