Maetschke Stefan R, Madhamshettiwar Piyush B, Davis Melissa J, Ragan Mark A
Institute for Molecular Bioscience and ARC Centre of Excellence in Bioinformatics, Brisbane, QLD 4072, Australia, Tel.: 61 7 3346 2616; Fax: 61 7 3346 2101;
Brief Bioinform. 2014 Mar;15(2):195-211. doi: 10.1093/bib/bbt034. Epub 2013 May 21.
Inference of gene regulatory network from expression data is a challenging task. Many methods have been developed to this purpose but a comprehensive evaluation that covers unsupervised, semi-supervised and supervised methods, and provides guidelines for their practical application, is lacking. We performed an extensive evaluation of inference methods on simulated and experimental expression data. The results reveal low prediction accuracies for unsupervised techniques with the notable exception of the Z-SCORE method on knockout data. In all other cases, the supervised approach achieved the highest accuracies and even in a semi-supervised setting with small numbers of only positive samples, outperformed the unsupervised techniques.
从表达数据推断基因调控网络是一项具有挑战性的任务。为此已经开发了许多方法,但缺乏涵盖无监督、半监督和监督方法的全面评估,也没有为它们的实际应用提供指导方针。我们对模拟和实验表达数据的推断方法进行了广泛评估。结果表明,无监督技术的预测准确率较低,但Z-SCORE方法在基因敲除数据上是个显著例外。在所有其他情况下,监督方法实现了最高准确率,即使在只有少量正样本的半监督设置中,也优于无监督技术。