Suppr超能文献

胎儿肾单位祖细胞的数量限制输尿管分支和成人肾单位的形成。

The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment.

作者信息

Cebrian Cristina, Asai Naoya, D'Agati Vivette, Costantini Frank

机构信息

Department of Genetics and Development, Columbia University, New York, NY 10032, USA.

Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.

出版信息

Cell Rep. 2014 Apr 10;7(1):127-37. doi: 10.1016/j.celrep.2014.02.033. Epub 2014 Mar 20.

Abstract

Nephrons, the functional units of the kidney, develop from progenitor cells (cap mesenchyme [CM]) surrounding the epithelial ureteric bud (UB) tips. Reciprocal signaling between UB and CM induces nephrogenesis and UB branching. Although low nephron number is implicated in hypertension and renal disease, the mechanisms that determine nephron number are obscure. To test the importance of nephron progenitor cell number, we genetically ablated 40% of these cells, asking whether this would limit kidney size and nephron number or whether compensatory mechanisms would allow the developing organ to recover. The reduction in CM cell number decreased the rate of branching, which in turn allowed the number of CM cells per UB tip to normalize, revealing a self-correction mechanism. However, the retarded UB branching impaired kidney growth, leaving a permanent nephron deficit. Thus, the number of fetal nephron progenitor cells is an important determinant of nephron endowment, largely via its effect on UB branching.

摘要

肾单位是肾脏的功能单位,由围绕上皮输尿管芽(UB)尖端的祖细胞(帽状间充质[CM])发育而来。UB和CM之间的相互信号传导诱导肾发生和UB分支。尽管肾单位数量少与高血压和肾脏疾病有关,但决定肾单位数量的机制尚不清楚。为了测试肾单位祖细胞数量的重要性,我们通过基因手段去除了40%的这些细胞,探究这是否会限制肾脏大小和肾单位数量,或者补偿机制是否会使发育中的器官恢复。CM细胞数量的减少降低了分支速率,这反过来又使每个UB尖端的CM细胞数量恢复正常,揭示了一种自我纠正机制。然而,延迟的UB分支损害了肾脏生长,导致永久性肾单位不足。因此,胎儿肾单位祖细胞的数量在很大程度上通过其对UB分支的影响,成为肾单位禀赋的一个重要决定因素。

相似文献

1
The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment.
Cell Rep. 2014 Apr 10;7(1):127-37. doi: 10.1016/j.celrep.2014.02.033. Epub 2014 Mar 20.
2
Prorenin receptor is critical for nephron progenitors.
Dev Biol. 2016 Jan 15;409(2):382-91. doi: 10.1016/j.ydbio.2015.11.024. Epub 2015 Dec 3.
3
Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis.
PLoS Biol. 2016 Feb 19;14(2):e1002382. doi: 10.1371/journal.pbio.1002382. eCollection 2016 Feb.
4
Nephron progenitor cells: shifting the balance of self-renewal and differentiation.
Curr Top Dev Biol. 2014;107:293-331. doi: 10.1016/B978-0-12-416022-4.00011-1.
5
Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy.
PLoS One. 2013;8(3):e58243. doi: 10.1371/journal.pone.0058243. Epub 2013 Mar 13.
6
Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching.
Development. 2015 Aug 1;142(15):2574-85. doi: 10.1242/dev.122630. Epub 2015 Jun 26.
8
Cessation of renal morphogenesis in mice.
Dev Biol. 2007 Oct 15;310(2):379-87. doi: 10.1016/j.ydbio.2007.08.021. Epub 2007 Aug 16.

引用本文的文献

1
Engineering kidney developmental trajectory using culture boundary conditions.
Nat Commun. 2025 Aug 22;16(1):7829. doi: 10.1038/s41467-025-63197-5.
3
Cystic fibrosis-related kidney disease-emerging morbidity and disease modifier.
Pediatr Nephrol. 2025 Mar 17. doi: 10.1007/s00467-025-06715-3.
4
Methylseq, single-nuclei RNAseq, and discovery proteomics identify pathways associated with nephron-deficit CKD in the HSRA rat model.
Am J Physiol Renal Physiol. 2025 Apr 1;328(4):F470-F488. doi: 10.1152/ajprenal.00258.2024. Epub 2025 Feb 21.
5
Absent, Small, or Homeotic 2-Like-Mediated H3K4 Methylation and Nephrogenesis.
J Am Soc Nephrol. 2025 May 1;36(5):798-811. doi: 10.1681/ASN.0000000600. Epub 2025 Jan 7.
6
Mesenchymal GDNF promotes intestinal enterochromaffin cell differentiation.
iScience. 2024 Oct 24;27(12):111246. doi: 10.1016/j.isci.2024.111246. eCollection 2024 Dec 20.
7
Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses.
Nat Mater. 2024 Nov;23(11):1582-1591. doi: 10.1038/s41563-024-02019-3. Epub 2024 Oct 9.
8
Highly parallel production of designer organoids by mosaic patterning of progenitors.
Cell Syst. 2024 Jul 17;15(7):649-661.e9. doi: 10.1016/j.cels.2024.06.004. Epub 2024 Jul 8.

本文引用的文献

1
Modelling cell turnover in a complex tissue during development.
J Theor Biol. 2013 Dec 7;338:66-79. doi: 10.1016/j.jtbi.2013.08.033. Epub 2013 Sep 7.
2
Origin and function of myofibroblasts in kidney fibrosis.
Nat Med. 2013 Aug;19(8):1047-53. doi: 10.1038/nm.3218. Epub 2013 Jun 30.
3
Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system.
Wiley Interdiscip Rev Dev Biol. 2012 Sep-Oct;1(5):693-713. doi: 10.1002/wdev.52.
4
Detection of β-galactosidase activity: X-gal staining.
Methods Mol Biol. 2012;886:241-50. doi: 10.1007/978-1-61779-851-1_21.
5
Mammalian kidney development: principles, progress, and projections.
Cold Spring Harb Perspect Biol. 2012 May 1;4(5):a008300. doi: 10.1101/cshperspect.a008300.
6
Safety in glomerular numbers.
Pediatr Nephrol. 2012 Oct;27(10):1881-7. doi: 10.1007/s00467-012-2169-x. Epub 2012 Apr 25.
7
Nephron formation adopts a novel spatial topology at cessation of nephrogenesis.
Dev Biol. 2011 Dec 1;360(1):110-22. doi: 10.1016/j.ydbio.2011.09.011. Epub 2011 Sep 21.
8
Human nephron number: implications for health and disease.
Pediatr Nephrol. 2011 Sep;26(9):1529-33. doi: 10.1007/s00467-011-1843-8. Epub 2011 May 22.
9
Dissection of embryonic mouse kidney, culture in vitro, and imaging of the developing organ.
Cold Spring Harb Protoc. 2011 May 1;2011(5):pdb.prot5613. doi: 10.1101/pdb.prot5613.
10
Microarrays and RNA-Seq identify molecular mechanisms driving the end of nephron production.
BMC Dev Biol. 2011 Mar 12;11:15. doi: 10.1186/1471-213X-11-15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验