Suppr超能文献

面部动作的自动解码揭示了欺骗性的疼痛表情。

Automatic decoding of facial movements reveals deceptive pain expressions.

作者信息

Bartlett Marian Stewart, Littlewort Gwen C, Frank Mark G, Lee Kang

机构信息

Institute for Neural Computation, University of California, 9500 Gilman Drive, MC 0440, La Jolla, San Diego, CA 92093-0440, USA.

Institute for Neural Computation, University of California, 9500 Gilman Drive, MC 0440, La Jolla, San Diego, CA 92093-0440, USA.

出版信息

Curr Biol. 2014 Mar 31;24(7):738-43. doi: 10.1016/j.cub.2014.02.009. Epub 2014 Mar 20.

Abstract

In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1-3]. Two motor pathways control facial movement [4-7]: a subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions, and a cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. Their simulation is so successful that they can deceive most observers [8-11]. However, machine vision may be able to distinguish deceptive facial signals from genuine facial signals by identifying the subtle differences between pyramidally and extrapyramidally driven movements. Here, we show that human observers could not discriminate real expressions of pain from faked expressions of pain better than chance, and after training human observers, we improved accuracy to a modest 55%. However, a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system's superiority is attributable to its ability to differentiate the dynamics of genuine expressions from faked expressions. Thus, by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling.

摘要

在人类等高度社会化的物种中,面部已经进化到能够传达丰富的社交互动信息,包括情感和痛苦的表达[1 - 3]。有两条运动通路控制面部运动[4 - 7]:一个皮质下锥体外系运动系统驱动所感受到的情感的自发面部表情,而一个皮质锥体系运动系统控制随意面部表情。锥体系使人类能够模拟并未实际体验到的情感的面部表情。他们的模拟非常成功,以至于能够欺骗大多数观察者[8 - 11]。然而,机器视觉或许能够通过识别锥体系和锥体外系驱动运动之间的细微差异,将欺骗性面部信号与真实面部信号区分开来。在此,我们表明,人类观察者辨别真实疼痛表情和伪装疼痛表情的能力并不比随机猜测更好,并且在对人类观察者进行训练后,我们将准确率适度提高到了55%。然而,一个自动测量面部运动并对这些运动进行模式识别的计算机视觉系统达到了85%的准确率。机器系统的优势归因于其区分真实表情和伪装表情动态的能力。因此,通过机器视觉系统揭示面部动作的动态,我们的方法有可能阐明参与情感信号传递的神经控制系统的行为特征。

相似文献

3
Genuine, suppressed and faked facial expressions of pain in children.儿童真实、被抑制和伪装的疼痛表情
Pain. 2006 Dec 15;126(1-3):64-71. doi: 10.1016/j.pain.2006.06.013. Epub 2006 Jul 24.
10

引用本文的文献

5
Automated Assessment of Pain: Prospects, Progress, and a Path Forward.疼痛的自动化评估:前景、进展与前进之路
ICMI 21 Companion (2021). 2021 Oct;2021:54-57. doi: 10.1145/3461615.3485671. Epub 2021 Dec 17.
6
Denver pain authenticity stimulus set (D-PASS).丹佛疼痛真实性刺激集(D-PASS)。
Behav Res Methods. 2024 Apr;56(4):2992-3008. doi: 10.3758/s13428-023-02283-2. Epub 2023 Nov 22.
9
Using AI to Detect Pain through Facial Expressions: A Review.利用人工智能通过面部表情检测疼痛:综述
Bioengineering (Basel). 2023 May 2;10(5):548. doi: 10.3390/bioengineering10050548.
10
What is missing in the study of emotion expression?情绪表达研究中缺少了什么?
Front Psychol. 2023 Apr 27;14:1158136. doi: 10.3389/fpsyg.2023.1158136. eCollection 2023.

本文引用的文献

2
Cerebral regulation of facial expressions of pain.大脑对疼痛面部表情的调节。
J Neurosci. 2011 Jun 15;31(24):8730-8. doi: 10.1523/JNEUROSCI.0217-11.2011.
3
Perceiving pain in others: validation of a dual processing model.感知他人的疼痛:双重加工模型的验证。
Pain. 2011 May;152(5):1083-1089. doi: 10.1016/j.pain.2011.01.025. Epub 2011 Mar 8.
4
Physicians being deceived.医生被欺骗。
Pain Med. 2007 Jul-Aug;8(5):433-7. doi: 10.1111/j.1526-4637.2007.00315.x.
5
Accuracy of deception judgments.欺骗判断的准确性。
Pers Soc Psychol Rev. 2006;10(3):214-34. doi: 10.1207/s15327957pspr1003_2.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验