Suppr超能文献

图像平滑度对内在功能连接性和头部运动混杂因素的影响。

The impact of image smoothness on intrinsic functional connectivity and head motion confounds.

作者信息

Scheinost Dustin, Papademetris Xenophon, Constable R Todd

机构信息

Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.

Department of Diagnostic Radiology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

出版信息

Neuroimage. 2014 Jul 15;95:13-21. doi: 10.1016/j.neuroimage.2014.03.035. Epub 2014 Mar 20.

Abstract

We present a novel method for controlling the effects of group differences in motion on functional connectivity studies. Resting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool that allows for the assessment of whole-brain functional organization across a wide range of clinical populations. However, as highlighted by recent studies, many measures commonly used in rs-fMRI are highly correlated with subject head movement. A source of this problem is that motion itself, and motion correction algorithms, lead to spatial smoothing, which is then variable across the brain and across subjects or groups dependent upon the amount of motion present during scanning. Studies aimed at elucidating differences between populations that have different head-motion characteristics (e.g., patients often move more in the scanner than healthy control subjects) are significantly confounded by these effects. In this work, we propose a solution to this problem, uniform smoothing, which ensures that all subject images in a study have equal effective spatial resolution. We establish that differences in the intrinsic smoothness of images across a group can confound connectivity results and link these differences in smoothness to motion. We demonstrate that eliminating these smoothness differences via our uniform smoothing solution is successful in reducing confounds related to the differences in head motion between subjects.

摘要

我们提出了一种新方法,用于控制运动中群体差异对功能连接性研究的影响。静息态功能磁共振成像(rs-fMRI)是一种强大的工具,可用于评估广泛临床人群的全脑功能组织。然而,正如最近研究所强调的,rs-fMRI中常用的许多测量方法与受试者头部运动高度相关。这个问题的一个根源是,运动本身以及运动校正算法会导致空间平滑,而这种平滑在大脑中以及在不同受试者或群体之间是可变的,这取决于扫描期间的运动量。旨在阐明具有不同头部运动特征的人群(例如,患者在扫描仪中的运动通常比健康对照受试者更多)之间差异的研究,会因这些影响而受到显著干扰。在这项工作中,我们提出了一个解决这个问题的方法,即均匀平滑,它可确保研究中的所有受试者图像具有相等的有效空间分辨率。我们证实,一组图像内在平滑度的差异会混淆连接性结果,并将这些平滑度差异与运动联系起来。我们证明,通过我们的均匀平滑解决方案消除这些平滑度差异,成功减少了与受试者之间头部运动差异相关的干扰因素。

相似文献

6
Head Motion and Correction Methods in Resting-state Functional MRI.静息态功能磁共振成像中的头部运动及校正方法
Magn Reson Med Sci. 2016;15(2):178-86. doi: 10.2463/mrms.rev.2015-0060. Epub 2015 Dec 22.

引用本文的文献

5
Functional brain networks reflect spatial and temporal autocorrelation.功能性脑网络反映了空间和时间自相关。
Nat Neurosci. 2023 May;26(5):867-878. doi: 10.1038/s41593-023-01299-3. Epub 2023 Apr 24.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验