Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
Neuroimage. 2013 Nov 15;82:87-100. doi: 10.1016/j.neuroimage.2013.05.118. Epub 2013 Jun 5.
Intrinsic functional connectivity analysis using resting-state functional magnetic resonance imaging (rsfMRI) has become a powerful tool for examining brain functional organization. Global artifacts such as physiological noise pose a significant problem in estimation of intrinsic functional connectivity. Here we develop and test a novel random subspace method for functional connectivity (RSMFC) that effectively removes global artifacts in rsfMRI data. RSMFC estimates the partial correlation between a seed region and each target brain voxel using multiple subsets of voxels sampled randomly across the whole brain. We evaluated RSMFC on both simulated and experimental rsfMRI data and compared its performance with standard methods that rely on global mean regression (GSReg) which are widely used to remove global artifacts. Using extensive simulations we demonstrate that RSMFC is effective in removing global artifacts in rsfMRI data. Critically, using a novel simulated dataset we demonstrate that, unlike GSReg, RSMFC does not artificially introduce anti-correlations between inherently uncorrelated networks, a result of paramount importance for reliably estimating functional connectivity. Furthermore, we show that the overall sensitivity, specificity and accuracy of RSMFC are superior to GSReg. Analysis of posterior cingulate cortex connectivity in experimental rsfMRI data from 22 healthy adults revealed strong functional connectivity in the default mode network, including more reliable identification of connectivity with left and right medial temporal lobe regions that were missed by GSReg. Notably, compared to GSReg, negative correlations with lateral fronto-parietal regions were significantly weaker in RSMFC. Our results suggest that RSMFC is an effective method for minimizing the effects of global artifacts and artificial negative correlations, while accurately recovering intrinsic functional brain networks.
使用静息态功能磁共振成像 (rsfMRI) 进行内在功能连接分析已成为研究大脑功能组织的有力工具。全局伪影(如生理噪声)在内在功能连接的估计中是一个重大问题。在这里,我们开发并测试了一种新的随机子空间功能连接 (RSMFC) 方法,该方法可有效去除 rsfMRI 数据中的全局伪影。RSMFC 使用从整个大脑中随机采样的多个体素子集来估计种子区域与每个目标大脑体素之间的偏相关。我们在模拟和实验 rsfMRI 数据上评估了 RSMFC,并将其性能与广泛用于去除全局伪影的标准方法(即基于全局均值回归 (GSReg) 的方法)进行了比较。通过广泛的模拟,我们证明 RSMFC 可有效去除 rsfMRI 数据中的全局伪影。至关重要的是,使用新的模拟数据集,我们证明 RSMFC 不会像 GSReg 那样人为地在固有不相关的网络之间引入反相关,这对于可靠估计功能连接至关重要。此外,我们还表明 RSMFC 的整体灵敏度、特异性和准确性均优于 GSReg。对 22 名健康成年人实验性 rsfMRI 数据的后扣带回连接进行分析,结果显示默认模式网络中存在强烈的功能连接,包括与左、右侧内侧颞叶区域的连接更可靠,而 GSReg 则无法识别这些区域。值得注意的是,与 GSReg 相比,RSMFC 与外侧额顶叶区域的负相关明显较弱。我们的结果表明,RSMFC 是一种有效方法,可最大限度地减少全局伪影和人为负相关的影响,同时准确地恢复内在功能脑网络。