Suppr超能文献

基于随机子空间偏相关的静息态功能连接估计:一种减少全局伪影的新方法。

Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts.

机构信息

Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Neuroimage. 2013 Nov 15;82:87-100. doi: 10.1016/j.neuroimage.2013.05.118. Epub 2013 Jun 5.

Abstract

Intrinsic functional connectivity analysis using resting-state functional magnetic resonance imaging (rsfMRI) has become a powerful tool for examining brain functional organization. Global artifacts such as physiological noise pose a significant problem in estimation of intrinsic functional connectivity. Here we develop and test a novel random subspace method for functional connectivity (RSMFC) that effectively removes global artifacts in rsfMRI data. RSMFC estimates the partial correlation between a seed region and each target brain voxel using multiple subsets of voxels sampled randomly across the whole brain. We evaluated RSMFC on both simulated and experimental rsfMRI data and compared its performance with standard methods that rely on global mean regression (GSReg) which are widely used to remove global artifacts. Using extensive simulations we demonstrate that RSMFC is effective in removing global artifacts in rsfMRI data. Critically, using a novel simulated dataset we demonstrate that, unlike GSReg, RSMFC does not artificially introduce anti-correlations between inherently uncorrelated networks, a result of paramount importance for reliably estimating functional connectivity. Furthermore, we show that the overall sensitivity, specificity and accuracy of RSMFC are superior to GSReg. Analysis of posterior cingulate cortex connectivity in experimental rsfMRI data from 22 healthy adults revealed strong functional connectivity in the default mode network, including more reliable identification of connectivity with left and right medial temporal lobe regions that were missed by GSReg. Notably, compared to GSReg, negative correlations with lateral fronto-parietal regions were significantly weaker in RSMFC. Our results suggest that RSMFC is an effective method for minimizing the effects of global artifacts and artificial negative correlations, while accurately recovering intrinsic functional brain networks.

摘要

使用静息态功能磁共振成像 (rsfMRI) 进行内在功能连接分析已成为研究大脑功能组织的有力工具。全局伪影(如生理噪声)在内在功能连接的估计中是一个重大问题。在这里,我们开发并测试了一种新的随机子空间功能连接 (RSMFC) 方法,该方法可有效去除 rsfMRI 数据中的全局伪影。RSMFC 使用从整个大脑中随机采样的多个体素子集来估计种子区域与每个目标大脑体素之间的偏相关。我们在模拟和实验 rsfMRI 数据上评估了 RSMFC,并将其性能与广泛用于去除全局伪影的标准方法(即基于全局均值回归 (GSReg) 的方法)进行了比较。通过广泛的模拟,我们证明 RSMFC 可有效去除 rsfMRI 数据中的全局伪影。至关重要的是,使用新的模拟数据集,我们证明 RSMFC 不会像 GSReg 那样人为地在固有不相关的网络之间引入反相关,这对于可靠估计功能连接至关重要。此外,我们还表明 RSMFC 的整体灵敏度、特异性和准确性均优于 GSReg。对 22 名健康成年人实验性 rsfMRI 数据的后扣带回连接进行分析,结果显示默认模式网络中存在强烈的功能连接,包括与左、右侧内侧颞叶区域的连接更可靠,而 GSReg 则无法识别这些区域。值得注意的是,与 GSReg 相比,RSMFC 与外侧额顶叶区域的负相关明显较弱。我们的结果表明,RSMFC 是一种有效方法,可最大限度地减少全局伪影和人为负相关的影响,同时准确地恢复内在功能脑网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba10/3759623/934bea41e772/nihms491704f1.jpg

相似文献

引用本文的文献

2
Paired test of matrix graphs and brain connectivity analysis.矩阵图配对测试与脑连接性分析
Biostatistics. 2021 Apr 10;22(2):402-420. doi: 10.1093/biostatistics/kxz037.

本文引用的文献

1
EEG correlates of time-varying BOLD functional connectivity.时变 BOLD 功能连接的 EEG 相关物。
Neuroimage. 2013 May 15;72:227-36. doi: 10.1016/j.neuroimage.2013.01.049. Epub 2013 Jan 31.
4
The role of physiological noise in resting-state functional connectivity.生理噪声在静息态功能连接中的作用。
Neuroimage. 2012 Aug 15;62(2):864-70. doi: 10.1016/j.neuroimage.2012.01.016. Epub 2012 Jan 8.
6
Anticorrelations in resting state networks without global signal regression.静息态网络中无需回归全局信号的反相关。
Neuroimage. 2012 Jan 16;59(2):1420-8. doi: 10.1016/j.neuroimage.2011.08.048. Epub 2011 Aug 26.
7
Sparse brain network recovery under compressed sensing.稀疏脑网络在压缩感知下的恢复。
IEEE Trans Med Imaging. 2011 May;30(5):1154-65. doi: 10.1109/TMI.2011.2140380. Epub 2011 Apr 7.
9
Accuracy of Pseudo-Inverse Covariance Learning--A Random Matrix Theory Analysis.伪逆协方差学习的精度——随机矩阵理论分析。
IEEE Trans Pattern Anal Mach Intell. 2011 Jul;33(7):1470-81. doi: 10.1109/TPAMI.2010.186. Epub 2010 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验