Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN.
Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), MD, Bethesda.
J Glaucoma. 2024 Nov 1;33(11):815-822. doi: 10.1097/IJG.0000000000002472. Epub 2024 Aug 5.
We developed unsupervised machine learning models to identify different subtypes of patients with ocular hypertension in terms of visual field (VF) progression and discovered 4 subtypes with different trends of VF worsening. We then identified factors associated with fast VF progression.
To identify ocular hypertension (OHT) subtypes with different trends of visual field (VF) progression based on unsupervised machine learning and to discover factors associated with fast VF progression.
Cross-sectional and longitudinal study.
A total of 3133 eyes of 1568 ocular hypertension treatment study (OHTS) participants with at least 5 follow-up VF tests were included in the study.
We used a latent class mixed model (LCMM) to identify OHT subtypes using standard automated perimetry (SAP) mean deviation (MD) trajectories. We characterized the subtypes based on demographic, clinical, ocular, and VF factors at the baseline. We then identified factors driving fast VF progression using generalized estimating equation (GEE) and justified findings qualitatively and quantitatively.
Rates of SAP mean deviation (MD) change.
The LCMM model discovered four clusters (subtypes) of eyes with different trajectories of MD worsening. The number of eyes in clusters were 794 (25%), 1675 (54%), 531 (17%), and 133 (4%). We labeled the clusters as improvers (cluster 1), stables (cluster 2), slow progressors (cluster 3), and fast progressors (cluster 4) based on their mean of MD decline rate, which were 0.08, -0.06, -0.21, and -0.45 dB/year, respectively. Eyes with fast VF progression had higher baseline age, intraocular pressure (IOP), pattern standard deviation (PSD) and refractive error (RE), but lower central corneal thickness (CCT). Fast progression was associated with being male, heart disease history, diabetes history, African American race, and stroke history.
Unsupervised clustering can objectively identify OHT subtypes including those with fast VF worsening without human expert intervention. Fast VF progression was associated with higher history of stroke, heart disease and diabetes. Fast progressors were more from African American race, males, and had higher incidence of glaucoma conversion. Subtyping can provide guidance for adjusting treatment plans to slow vision loss and improve quality of life of patients with a faster progression course.
我们开发了无监督机器学习模型,以根据视野(VF)进展识别不同类型的眼压升高患者,并发现了 4 种具有不同 VF 恶化趋势的亚型。然后,我们确定了与快速 VF 进展相关的因素。
基于无监督机器学习识别具有不同 VF 进展趋势的眼压升高(OHT)亚型,并发现与快速 VF 进展相关的因素。
横断面和纵向研究。
共纳入 1568 名眼压升高治疗研究(OHTS)参与者的 3133 只眼,这些参与者至少有 5 次随访 VF 检查。
我们使用潜在类别混合模型(LCMM),根据标准自动视野计(SAP)平均偏差(MD)轨迹来识别 OHT 亚型。我们根据基线时的人口统计学、临床、眼部和 VF 因素对亚型进行特征描述。然后,我们使用广义估计方程(GEE)确定导致快速 VF 进展的因素,并定性和定量地证明发现。
SAP 平均偏差(MD)变化率。
LCMM 模型发现了具有不同 MD 恶化轨迹的 4 个眼聚类(亚型)。各聚类的眼数分别为 794 只(25%)、1675 只(54%)、531 只(17%)和 133 只(4%)。我们根据 MD 下降率的平均值将聚类标记为改善者(聚类 1)、稳定者(聚类 2)、缓慢进展者(聚类 3)和快速进展者(聚类 4),分别为 0.08、-0.06、-0.21 和-0.45 dB/年。VF 进展较快的眼睛基线年龄、眼内压(IOP)、模式标准差(PSD)和屈光不正(RE)较高,但中央角膜厚度(CCT)较低。快速进展与男性、心脏病史、糖尿病史、非裔美国人种族和中风史有关。
无监督聚类可以客观地识别包括快速 VF 恶化在内的 OHT 亚型,而无需人类专家干预。VF 快速进展与中风、心脏病和糖尿病的病史有关。快速进展者更可能来自非裔美国人种族、男性,并且更有可能发生青光眼转化。亚型分析可以为调整治疗计划提供指导,以减缓视力丧失速度,并改善进展较快患者的生活质量。