Huang Xiaoqin, Poursoroush Asma, Sun Jian, Boland Michael V, Johnson Chris, Yousefi Siamak
Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, USA.
Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, USA.
ArXiv. 2023 Sep 26:arXiv:2309.15867v1.
To identify ocular hypertension (OHT) subtypes with different trends of visual field (VF) progression based on unsupervised machine learning and to discover factors associated with fast VF progression.
Cross-sectional and longitudinal study.
A total of 3133 eyes of 1568 ocular hypertension treatment study (OHTS) participants with at least five follow-up VF tests were included in the study.
We used a latent class mixed model (LCMM) to identify OHT subtypes using standard automated perimetry (SAP) mean deviation (MD) trajectories. We characterized the subtypes based on demographic, clinical, ocular, and VF factors at the baseline. We then identified factors driving fast VF progression using generalized estimating equation (GEE) and justified findings qualitatively and quantitatively.
Rates of SAP mean deviation (MD) change.
The LCMM model discovered four clusters (subtypes) of eyes with different trajectories of MD worsening. The number of eyes in clusters were 794 (25%), 1675 (54%), 531 (17%) and 133 (4%). We labeled the clusters as Improvers, Stables, Slow progressors, and Fast progressors based on their mean of MD decline, which were 0.08, -0.06, -0.21, and -0.45 dB/year, respectively. Eyes with fast VF progression had higher baseline age, intraocular pressure (IOP), pattern standard deviation (PSD) and refractive error (RE), but lower central corneal thickness (CCT). Fast progression was associated with calcium channel blockers, being male, heart disease history, diabetes history, African American race, stroke history, and migraine headaches.
Unsupervised clustering can objectively identify OHT subtypes including those with fast VF worsening without human expert intervention. Fast VF progression was associated with higher history of stroke, heart disease, diabetes, and history of more using calcium channel blockers. Fast progressors were more from African American race and males and had higher incidence of glaucoma conversion. Subtyping can provide guidance for adjusting treatment plans to slow vision loss and improve quality of life of patients with a faster progression course.
基于无监督机器学习识别具有不同视野(VF)进展趋势的高眼压症(OHT)亚型,并发现与快速VF进展相关的因素。
横断面和纵向研究。
1568名高眼压症治疗研究(OHTS)参与者的3133只眼睛被纳入研究,这些眼睛至少进行了五次随访VF测试。
我们使用潜在类别混合模型(LCMM),通过标准自动视野计(SAP)平均偏差(MD)轨迹识别OHT亚型。我们根据基线时的人口统计学、临床、眼部和VF因素对这些亚型进行了特征描述。然后,我们使用广义估计方程(GEE)确定驱动快速VF进展的因素,并从定性和定量方面对研究结果进行论证。
SAP平均偏差(MD)变化率。
LCMM模型发现了四组(亚型)眼睛,其MD恶化轨迹不同。各组眼睛数量分别为794只(25%)、1675只(54%)、531只(17%)和133只(4%)。根据MD下降平均值,我们将这些组分别标记为改善型、稳定型、缓慢进展型和快速进展型,其MD下降平均值分别为每年0.08、-0.06、-0.21和-0.45 dB。VF快速进展的眼睛基线年龄、眼压(IOP)、模式标准差(PSD)和屈光不正(RE)较高,但中央角膜厚度(CCT)较低。快速进展与钙通道阻滞剂、男性、心脏病史、糖尿病史、非裔美国人种族、中风史和偏头痛有关。
无监督聚类可以客观地识别OHT亚型,包括那些在无人类专家干预情况下VF快速恶化的亚型。快速VF进展与中风、心脏病、糖尿病病史以及更多使用钙通道阻滞剂的病史有关。快速进展型更多来自非裔美国人种族和男性,青光眼转化率更高。亚型分类可为调整治疗方案提供指导,以减缓视力丧失,提高进展较快患者的生活质量。