Suppr超能文献

纳米图案抗菌酶表面结合杀菌和防污释放性能。

Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

出版信息

Nanoscale. 2014 May 7;6(9):4750-7. doi: 10.1039/c3nr06497b.

Abstract

Surfaces incorporating the antimicrobial enzyme, lysozyme, have been previously demonstrated to effectively disrupt bacterial cellular envelopes. As with any surface active antimicrobial, however, lysozyme-expressing surfaces become limited in their utility by the accumulation of dead bacteria and debris. Surfaces modified with environmentally responsive polymers, on the other hand, have been shown to reversibly attach and release both live and dead bacterial cells. In this work, we combine the antimicrobial activity of lysozyme with the fouling release capability of the thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), which has a lower critical solution temperature (LCST) in water at ∼32 °C. Nanopatterned PNIPAAm brushes were fabricated using interferometric lithography followed by surface-initiated polymerization. Lysozyme was then adsorbed into the polymer-free regions of the substrate between the brushes to achieve a hybrid surface with switchable antimicrobial activity and fouling-release ability in response to the change of temperature. The temperature triggered hydration and conformational change of the nanopatterned PNIPAAm brushes provide the ability to temporally regulate the spatial concealment and exposure of adsorbed lysozyme. The biocidal efficacy and release properties of the hybrid surface were tested against Escherichia coli K12 and Staphylococcus epidermidis. The hybrid surfaces facilitated the attachment of bacteria at 37 °C for E. coli and 25 °C for S. epidermidis and when the temperature is above the LCST, collapsed and dehydrated PNIPAAm chains expose lysozyme to kill attached bacteria. Changing temperature across the LCST of PNIPAAm (e.g. from 37 °C to 25 °C for E. coli or from 25 °C to 37 °C for S. epidermidis) to induce a hydration transition of PNIPAAm promoted the release of dead bacteria and debris from the surfaces upon mild shearing. These results suggest that nano-engineered surfaces can provide an effective way for actively mitigating short term bacterial biofouling.

摘要

将具有抗菌酶溶菌酶的表面以前被证明可以有效地破坏细菌的细胞包膜。然而,与任何表面活性抗菌剂一样,表达溶菌酶的表面由于死细菌和碎片的积累而使其效用受到限制。另一方面,用环境响应聚合物修饰的表面已被证明可以可逆地附着和释放活细菌和死细菌细胞。在这项工作中,我们将溶菌酶的抗菌活性与热响应聚合物聚(N-异丙基丙烯酰胺)(PNIPAAm)的防污释放能力结合在一起,该聚合物在水(约 32°C)中的临界溶液温度(LCST)较低。使用干涉光刻法随后进行表面引发聚合来制造 PNIPAAm 纳米刷。然后将溶菌酶吸附到聚合物刷之间的基底的无聚合物区域中,以实现具有开关抗菌活性和对温度变化的防污释放能力的混合表面。纳米图案 PNIPAAm 刷的温度触发水合和构象变化提供了暂时调节吸附溶菌酶的空间隐蔽和暴露的能力。针对大肠杆菌 K12 和表皮葡萄球菌测试了混合表面的杀菌功效和释放性能。混合表面有利于在 37°C 下附着大肠杆菌,在 25°C 下附着表皮葡萄球菌,当温度高于 LCST 时,塌陷和脱水的 PNIPAAm 链会使溶菌酶暴露出来杀死附着的细菌。在 PNIPAAm 的 LCST (例如,从 37°C 到 25°C 对于大肠杆菌,或从 25°C 到 37°C 对于表皮葡萄球菌)下改变温度以诱导 PNIPAAm 的水合转变,可在温和剪切下促进死细菌和碎片从表面释放。这些结果表明,纳米工程表面可以为主动减轻短期细菌生物污垢提供一种有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验