Department of Biomedical Engineering, §Department of Mechanical Engineering & Materials Science, and ⊥NSF Research Triangle Materials Research Science & Engineering Center, Duke University , Durham, North Carolina 27708, United States.
ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9295-304. doi: 10.1021/am4022279. Epub 2013 Sep 16.
Model surfaces with switchable functionality based on nanopatterned, thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated using interferometric lithography combined with surface-initiated polymerization. The temperature-triggered hydration and conformational changes of nanopatterned PNIPAAm brushes reversibly modulate the spatial concealment and exposure of molecules that are immobilized in the intervals between nanopatterned brushes. A biocidal quaternary ammonium salt (QAS) was used to demonstrate the utility of nanopatterned PNIPAAm brushes to control biointerfacial interactions with bacteria. QAS was integrated into polymer-free regions of the substrate between nanopatterned PNIPAAm brushes. The biocidal efficacy and release properties of these surfaces were tested against Escherichia coli K12. Above the lower critical solution temperature (LCST) of PNIPAAm, desolvated, collapsed polymer chains facilitate the attachment of bacteria and expose QAS moieties that kill attached bacteria. Upon a reduction of the temperature below the LCST, swollen PNIPAAm chains promote the release of dead bacteria. These results demonstrate that nanopatterned PNIPAAm/QAS hybrid surfaces are model systems that exhibit an ability to undergo noncovalent, dynamic, and reversible changes in structure that can be used to control the attachment, killing, and release of bacteria in response to changes in temperature.
基于图案化、温敏的聚 N-异丙基丙烯酰胺(PNIPAAm)刷的可切换功能模型表面是使用干涉光刻结合表面引发聚合制备的。纳米图案化 PNIPAAm 刷的温度触发水合和构象变化可逆地调节固定在纳米图案化刷之间间隔内的分子的空间隐藏和暴露。季铵盐(QAS)被用作证明纳米图案化 PNIPAAm 刷控制与细菌的生物界面相互作用的实用性。QAS 被整合到纳米图案化 PNIPAAm 刷之间的基底无聚合物区域中。这些表面的杀菌功效和释放特性针对大肠杆菌 K12 进行了测试。在 PNIPAAm 的低临界溶液温度 (LCST) 以上,去溶剂化、塌陷的聚合物链有助于细菌的附着,并暴露出杀死附着细菌的 QAS 部分。当温度降低到 LCST 以下时,膨胀的 PNIPAAm 链促进死细菌的释放。这些结果表明,纳米图案化 PNIPAAm/QAS 杂化表面是模型系统,其表现出经历非共价、动态和可逆结构变化的能力,可用于控制细菌的附着、杀死和释放,以响应温度的变化。