Rouder Jeffrey N, Morey Richard D
a University of Missouri.
b University of Groningen.
Multivariate Behav Res. 2012 Nov;47(6):877-903. doi: 10.1080/00273171.2012.734737.
In this article, we present a Bayes factor solution for inference in multiple regression. Bayes factors are principled measures of the relative evidence from data for various models or positions, including models that embed null hypotheses. In this regard, they may be used to state positive evidence for a lack of an effect, which is not possible in conventional significance testing. One obstacle to the adoption of Bayes factor in psychological science is a lack of guidance and software. Recently, Liang, Paulo, Molina, Clyde, and Berger (2008) developed computationally attractive default Bayes factors for multiple regression designs. We provide a web applet for convenient computation and guidance and context for use of these priors. We discuss the interpretation and advantages of the advocated Bayes factor evidence measures.
在本文中,我们提出了一种用于多元回归推断的贝叶斯因子解决方案。贝叶斯因子是衡量来自数据针对各种模型或立场(包括嵌入零假设的模型)的相对证据的原则性指标。在这方面,它们可用于表明缺乏效应的正面证据,这在传统显著性检验中是不可能的。在心理科学中采用贝叶斯因子的一个障碍是缺乏指导和软件。最近,梁、保罗、莫利纳、克莱德和伯杰(2008年)为多元回归设计开发了计算上颇具吸引力的默认贝叶斯因子。我们提供了一个网络小程序,以便于计算,并为这些先验的使用提供指导和背景信息。我们讨论了所倡导的贝叶斯因子证据度量的解释和优点。