Linde Maximilian, Jochim Laura, Tendeiro Jorge N, van Ravenzwaaij Don
GESIS - Leibniz Institute for the Social Sciences, Cologne, Germany.
Department of Psychometrics and Statistics, University of Groningen, Groningen, The Netherlands.
PLoS One. 2025 May 23;20(5):e0322144. doi: 10.1371/journal.pone.0322144. eCollection 2025.
Biomedical research often utilizes Cox regression for the analysis of time-to-event data. The pervasive use of frequentist inference for these analyses implicates that the evidence for or against the presence (or absence) of an effect cannot be directly compared and that researchers must adhere to a predefined sampling plan. As an alternative, the use of Bayes factors improves upon these limitations, which is especially important for costly and time-consuming biomedical studies. However, Bayes factors involve their own difficulty of specifying priors for the parameters of the statistical model. In this article, we develop data-driven priors centered around zero for Cox regression tailored to nine subfields in biomedicine. To this end, we extracted hazard ratios and associated [Formula: see text] confidence intervals from the abstracts of large corpora of already existing studies within the nine biomedical subfields. We used these extracted data to inform priors for the nine subfields. All of our suggested priors are Normal distributions with means of 0 and standard deviations closely scattered around 1. We propose that researchers use these priors as reasonable starting points for their analyses.
生物医学研究经常使用Cox回归来分析事件发生时间数据。在这些分析中频繁使用频率推断意味着支持或反对效应存在(或不存在)的证据不能直接比较,并且研究人员必须遵循预定义的抽样计划。作为一种替代方法,贝叶斯因子的使用改进了这些局限性,这对于成本高昂且耗时的生物医学研究尤为重要。然而,贝叶斯因子在为统计模型的参数指定先验时也有其自身的困难。在本文中,我们针对生物医学的九个子领域,开发了以零为中心的数据驱动先验用于Cox回归。为此,我们从九个生物医学子领域中已有的大量研究的摘要中提取了风险比及相关的[公式:见正文]置信区间。我们使用这些提取的数据来为九个子领域提供先验信息。我们建议的所有先验都是均值为0且标准差紧密分布在1左右的正态分布。我们建议研究人员将这些先验作为其分析的合理起点。