Suppr超能文献

患者对癌症相关护理措施满意度量表的项目反应理论分析:对 1296 名多文化样本的心理测量学研究。

Item response theory analysis of the patient satisfaction with cancer-related care measure: a psychometric investigation in a multicultural sample of 1,296 participants.

机构信息

Department of Psychology, Neurocognitive Translational Research Lab, Cancer Control & Survivorship Program, University of Notre Dame, 109 Haggar Hall, Notre Dame, IN, 46556, USA,

出版信息

Support Care Cancer. 2014 Aug;22(8):2229-40. doi: 10.1007/s00520-014-2202-7. Epub 2014 Mar 25.

Abstract

BACKGROUND

We developed and validated a Patient Satisfaction with Cancer-Related Care (PSCC) measure using classical test theory methods. The present study applied item response theory (IRT) analysis to determine item-level psychometric properties, facilitate development of short forms, and inform future applications for the PSCC.

METHODS

We applied unidimensional IRT models to PSCC data from 1,296 participants (73% female; 18 to 86 years). An unconstrained graded response model (GRM) and a Rasch Model were fitted to estimate indices for model comparison using likelihood ratio (LR) test and information criteria. We computed item and latent trait parameter estimates, category and operating characteristic curves, and tested information curves for the better fitting model.

RESULTS

The GRM fitted the data better than the Rasch Model (LR = 828, df = 17, p < 0.001). The log-likelihood (-17,390.38 vs. -17,804.26) was larger, and the AIC and BIC were smaller for the GRM compared to the Rash Model (AIC = 34,960.77 vs. 35,754.73; BIC = 35,425.80 vs. 36,131.92). Item parameter estimates (IPEs) showed substantial variation in items' discriminating power (0.94 to 2.18). Standard errors of the IPEs were small (threshold parameters mostly around 0.1; discrimination parameters 0.1 to 0.2), confirming the precision of the IPEs.

CONCLUSION

The GRM provides precise IPEs that will enable comparable scores from different subsets of items, and facilitate optimal selections of items to estimate patients' latent satisfaction level. Given the large calibration sample, the IPEs can be used in settings with limited resources (e.g., smaller samples) to estimate patients' satisfaction.

摘要

背景

我们使用经典测试理论方法开发并验证了患者对癌症相关护理满意度(PSCC)量表。本研究应用项目反应理论(IRT)分析来确定项目水平的心理测量特性,促进短式量表的发展,并为 PSCC 的未来应用提供信息。

方法

我们对来自 1296 名参与者(73%为女性;年龄 18-86 岁)的 PSCC 数据应用了单维 IRT 模型。拟合无约束等级反应模型(GRM)和拉什模型,以使用似然比(LR)检验和信息准则来估计模型比较的指标。我们计算了项目和潜在特质参数估计、类别和操作特征曲线,并测试了较好拟合模型的信息曲线。

结果

GRM 比拉什模型更适合数据(LR=828,df=17,p<0.001)。与拉什模型相比,GRM 的对数似然值(-17390.38 比-17804.26)更大,AIC 和 BIC 更小(AIC=34960.77 比 35754.73;BIC=35425.80 比 36131.92)。项目参数估计(IPE)显示出项目区分能力的显著变化(0.94 到 2.18)。IPE 的标准误差较小(阈值参数大多在 0.1 左右;区分参数在 0.1 到 0.2 之间),确认了 IPE 的精度。

结论

GRM 提供了精确的 IPE,这将使不同项目子集的可比分数成为可能,并有助于最佳选择项目来估计患者的潜在满意度。鉴于较大的校准样本,IPE 可用于资源有限的环境(例如,较小的样本)来估计患者的满意度。

相似文献

引用本文的文献

本文引用的文献

4
Item response theory modeling in health outcomes measurement.健康结果测量中的项目反应理论建模。
Expert Rev Pharmacoecon Outcomes Res. 2003 Apr;3(2):131-45. doi: 10.1586/14737167.3.2.131.
10
Patient satisfaction: an increasingly important measure of quality.患者满意度:一项日益重要的质量衡量指标。
Ann Surg Oncol. 2006 Jun;13(6):764-5. doi: 10.1245/ASO.2006.01.904. Epub 2006 Apr 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验