Ecology. 2014 Feb;95(2):505-13. doi: 10.1890/13-1000.1.
Many studies have shown plant species' dispersal distances to be strongly related to life-history traits, but how well different traits can predict dispersal distances is not yet known. We used cross-validation techniques and a global data set (576 plant species) to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances. Including dispersal syndrome (wind, animal, ant, ballistic, and no special syndrome), growth form (tree, shrub, herb), seed mass, seed release height, and terminal velocity in different combinations as explanatory variables we constructed models to explain variation in measured maximum dispersal distances and evaluated their power to predict maximum dispersal distances. Predictions are more accurate, but also limited to a particular set of species, if data on more specific traits, such as terminal velocity, are available. The best model (R2 = 0.60) included dispersal syndrome, growth form, and terminal velocity as fixed effects. Reasonable predictions of maximum dispersal distance (R2 = 0.53) are also possible when using only the simplest and most commonly measured traits; dispersal syndrome and growth form together with species taxonomy data. We provide a function (dispeRsal) to be run in the software package R. This enables researchers to estimate maximum dispersal distances with confidence intervals for plant species using measured traits as predictors. Easily obtainable trait data, such as dispersal syndrome (inferred from seed morphology) and growth form, enable predictions to be made for a large number of species.
许多研究表明,植物物种的扩散距离与生活史特征密切相关,但不同特征对扩散距离的预测能力尚不清楚。我们使用交叉验证技术和一个全球数据集(576 个植物物种)来衡量简单植物特征预测物种最大扩散距离的能力。我们将传播综合征(风、动物、蚂蚁、弹道和无特殊综合征)、生长形式(树、灌木、草本)、种子质量、种子释放高度和终端速度等特征纳入不同的组合作为解释变量,构建了模型来解释测量的最大扩散距离的变化,并评估了它们预测最大扩散距离的能力。如果有更具体的特征(如终端速度)的数据,预测会更准确,但也仅限于特定的物种。最好的模型(R2=0.60)包括传播综合征、生长形式和终端速度作为固定效应。当仅使用最简单和最常用的特征(传播综合征和生长形式)以及物种分类数据时,也可以对最大扩散距离进行合理预测(R2=0.53)。我们提供了一个在 R 软件包中运行的函数(dispeRsal)。这使研究人员能够使用测量特征作为预测因子,对大量植物物种进行最大扩散距离的置信区间估计。易于获得的特征数据,如传播综合征(从种子形态推断)和生长形式,使对大量物种进行预测成为可能。