Suppr超能文献

氧气与癫痫发作动态:II. 计算建模

Oxygen and seizure dynamics: II. Computational modeling.

作者信息

Wei Yina, Ullah Ghanim, Ingram Justin, Schiff Steven J

机构信息

Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania;

Department of Physics, University of South Florida, Tampa, Florida; Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio; and.

出版信息

J Neurophysiol. 2014 Jul 15;112(2):213-23. doi: 10.1152/jn.00541.2013. Epub 2014 Mar 26.

Abstract

Electrophysiological recordings show intense neuronal firing during epileptic seizures leading to enhanced energy consumption. However, the relationship between oxygen metabolism and seizure patterns has not been well studied. Recent studies have developed fast and quantitative techniques to measure oxygen microdomain concentration during seizure events. In this article, we develop a biophysical model that accounts for these experimental observations. The model is an extension of the Hodgkin-Huxley formalism and includes the neuronal microenvironment dynamics of sodium, potassium, and oxygen concentrations. Our model accounts for metabolic energy consumption during and following seizure events. We can further account for the experimental observation that hypoxia can induce seizures, with seizures occurring only within a narrow range of tissue oxygen pressure. We also reproduce the interplay between excitatory and inhibitory neurons seen in experiments, accounting for the different oxygen levels observed during seizures in excitatory vs. inhibitory cell layers. Our findings offer a more comprehensive understanding of the complex interrelationship among seizures, ion dynamics, and energy metabolism.

摘要

电生理记录显示,癫痫发作期间神经元强烈放电,导致能量消耗增加。然而,氧代谢与癫痫发作模式之间的关系尚未得到充分研究。最近的研究开发了快速且定量的技术来测量癫痫发作期间的氧微区浓度。在本文中,我们建立了一个生物物理模型来解释这些实验观察结果。该模型是霍奇金 - 赫胥黎形式体系的扩展,包括钠、钾和氧浓度的神经元微环境动态。我们的模型解释了癫痫发作期间及之后的代谢能量消耗。我们还可以解释缺氧可诱发癫痫发作这一实验观察结果,即癫痫发作仅发生在组织氧压的狭窄范围内。我们还重现了实验中观察到的兴奋性和抑制性神经元之间的相互作用,解释了兴奋性与抑制性细胞层癫痫发作期间观察到的不同氧水平。我们的研究结果为癫痫发作、离子动力学和能量代谢之间复杂的相互关系提供了更全面的理解。

相似文献

1
Oxygen and seizure dynamics: II. Computational modeling.氧气与癫痫发作动态:II. 计算建模
J Neurophysiol. 2014 Jul 15;112(2):213-23. doi: 10.1152/jn.00541.2013. Epub 2014 Mar 26.
3
Oxygen and seizure dynamics: I. Experiments.氧气与癫痫发作动态:I. 实验
J Neurophysiol. 2014 Jul 15;112(2):205-12. doi: 10.1152/jn.00540.2013. Epub 2014 Mar 5.
7
Minimal model of interictal and ictal discharges "Epileptor-2".“Epileptor-2”的发作间期和发作放电的最小模型。
PLoS Comput Biol. 2018 May 31;14(5):e1006186. doi: 10.1371/journal.pcbi.1006186. eCollection 2018 May.
8
10
Assimilating seizure dynamics.整合癫痫动态。
PLoS Comput Biol. 2010 May 6;6(5):e1000776. doi: 10.1371/journal.pcbi.1000776.

引用本文的文献

9
Astrocytes: new evidence, new models, new roles.星形胶质细胞:新证据、新模型、新作用。
Biophys Rev. 2023 Oct 18;15(5):1303-1333. doi: 10.1007/s12551-023-01145-7. eCollection 2023 Oct.

本文引用的文献

1
Oxygen and seizure dynamics: I. Experiments.氧气与癫痫发作动态:I. 实验
J Neurophysiol. 2014 Jul 15;112(2):205-12. doi: 10.1152/jn.00540.2013. Epub 2014 Mar 5.
2
FRET excited ratiometric oxygen sensing in living tissue.在活体组织中进行 FRET 激发的比率氧传感。
J Neurosci Methods. 2013 Mar 30;214(1):45-51. doi: 10.1016/j.jneumeth.2013.01.002. Epub 2013 Jan 17.
4
Ion concentration dynamics as a mechanism for neuronal bursting.离子浓度动力学作为神经元爆发的一种机制。
J Biol Phys. 2011 Jun;37(3):361-73. doi: 10.1007/s10867-010-9212-6. Epub 2011 Jan 11.
5
Neural dynamics during anoxia and the "wave of death".缺氧期间的神经动力学与“死亡之波”。
PLoS One. 2011;6(7):e22127. doi: 10.1371/journal.pone.0022127. Epub 2011 Jul 13.
9
Assimilating seizure dynamics.整合癫痫动态。
PLoS Comput Biol. 2010 May 6;6(5):e1000776. doi: 10.1371/journal.pcbi.1000776.
10
Tracking and control of neuronal Hodgkin-Huxley dynamics.神经元霍奇金-赫胥黎动力学的追踪与控制
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):040901. doi: 10.1103/PhysRevE.79.040901. Epub 2009 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验