Institute for Biology, Experimental Biophysics, Humboldt Universität zu Berlin, D-10115 Berlin, Germany.
Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.
The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.
光遗传学领域使用通道视紫红质蛋白(ChR)进行光诱导的神经元激活。然而,缺乏在适度光强度下用于细胞抑制的优化工具。我们发现,用带正电荷的残基替换中央门控的 ChR 中的 E90 会产生只有可忽略的阳离子电导率的氯离子导电 ChR(ChloC)。分子动力学模型揭示了在门附近产生了一个高亲和力的 Cl(-)结合位点。稳定开放状态极大地提高了表达细胞的操作光敏感性(慢 ChloC)。在 CA1 锥体神经元中,ChloC 完全抑制了由去极化电流注入或突触刺激触发的动作电位。因此,通过反转选择性过滤器的电荷,我们创建了一类可直接光门控的阴离子通道,可用于以完全可逆的方式阻断神经元输出。