Mulder Matthias, Hwang Songhwan, Broser Matthias, Brünle Steffen, Skopintsev Petr, Schattenberg Caspar, Schnick Christina, Hartmann Sina, Church Jonathan, Schapiro Igor, Dworkowski Florian, Weinert Tobias, Hegemann Peter, Sun Han, Standfuss Jörg
PSI Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland.
Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.
J Am Chem Soc. 2025 Jan 8;147(1):1282-1290. doi: 10.1021/jacs.4c15402. Epub 2024 Dec 16.
Channelrhodopsins, light-gated cation channels, enable precise control of neural cell depolarization or hyperpolarization with light in the field of optogenetics. This study integrates time-resolved serial crystallography and atomistic molecular dynamics (MD) simulations to resolve the structural changes during C1C2 channelrhodopsin activation. Our observations reveal that within the crystal environment, C1C2 predominantly remains in a light-activated state with characteristics of the M intermediate. Here, rearrangement of retinal within its binding pocket partially opens the central gate toward the extracellular vestibule. These structural changes initiate channel opening but were insufficient to allow K flow. Adjusting protonation states to represent the subsequent N intermediate in our MD simulations induced further conformational changes, including rearrangements of transmembrane helices 2 and 7, that opened the inner gate and the putative ion-translocation pathway. This allowed spontaneous cation conduction with low conductance, aligning with experimental findings. Our findings provide critical structural insights into key intermediates of the channel opening mechanism, enhancing our understanding of ion conduction and selectivity in channelrhodopsins at an atomistic level.
通道视紫红质是一类光门控阳离子通道,可在光遗传学领域实现用光精确控制神经细胞的去极化或超极化。本研究结合了时间分辨串行晶体学和原子分子动力学(MD)模拟,以解析C1C2通道视紫红质激活过程中的结构变化。我们的观察结果表明,在晶体环境中,C1C2主要保持在具有M中间体特征的光激活状态。在此,视黄醛在其结合口袋内的重排部分打开了朝向细胞外前庭的中央门。这些结构变化启动了通道开放,但不足以允许钾离子流动。在我们的MD模拟中调整质子化状态以代表随后的N中间体,诱导了进一步的构象变化,包括跨膜螺旋2和7的重排,从而打开了内部门和假定的离子转运途径。这允许以低电导率进行自发阳离子传导,与实验结果一致。我们的研究结果为通道开放机制的关键中间体提供了重要的结构见解,在原子水平上增强了我们对通道视紫红质中离子传导和选择性的理解。