Department of Environmental Health Sciences, Johns Hopkins University (JHU) School of Public Health, Baltimore, MD 21205, USA.
Science. 2014 Apr 4;344(6179):55-8. doi: 10.1126/science.1249252. Epub 2014 Mar 27.
Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.
DNA 合成技术的快速发展使得工程病毒、生化途径和组装细菌基因组成为可能。在这里,我们报告了一种功能性的 272871 碱基对的设计真核染色体 synIII 的合成,它基于天然酿酒酵母染色体 III 的 316617 碱基对。synIII 的改变包括 TAG/TAA 终止密码子替换、端粒区域、内含子、转移 RNA、转座子和沉默交配位点的缺失,以及loxPsym 位点的插入,以实现基因组乱序。synIII 在酿酒酵母中是有功能的。在杂合二倍体中染色体的乱序显示,由于 synIII 上 MATα 等位基因的丢失,α-母本衍生物的数量大大增加。synIII 的完整设计和合成确立了酿酒酵母作为设计真核基因组生物学基础的地位。