Suppr超能文献

功能设计真核染色体的全合成。

Total synthesis of a functional designer eukaryotic chromosome.

机构信息

Department of Environmental Health Sciences, Johns Hopkins University (JHU) School of Public Health, Baltimore, MD 21205, USA.

出版信息

Science. 2014 Apr 4;344(6179):55-8. doi: 10.1126/science.1249252. Epub 2014 Mar 27.

Abstract

Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.

摘要

DNA 合成技术的快速发展使得工程病毒、生化途径和组装细菌基因组成为可能。在这里,我们报告了一种功能性的 272871 碱基对的设计真核染色体 synIII 的合成,它基于天然酿酒酵母染色体 III 的 316617 碱基对。synIII 的改变包括 TAG/TAA 终止密码子替换、端粒区域、内含子、转移 RNA、转座子和沉默交配位点的缺失,以及loxPsym 位点的插入,以实现基因组乱序。synIII 在酿酒酵母中是有功能的。在杂合二倍体中染色体的乱序显示,由于 synIII 上 MATα 等位基因的丢失,α-母本衍生物的数量大大增加。synIII 的完整设计和合成确立了酿酒酵母作为设计真核基因组生物学基础的地位。

相似文献

1
Total synthesis of a functional designer eukaryotic chromosome.
Science. 2014 Apr 4;344(6179):55-8. doi: 10.1126/science.1249252. Epub 2014 Mar 27.
2
Total synthesis of a eukaryotic chromosome: Redesigning and SCRaMbLE-ing yeast.
Bioessays. 2014 Sep;36(9):855-60. doi: 10.1002/bies.201400086. Epub 2014 Jul 22.
3
Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII.
Science. 1994 Sep 30;265(5181):2077-82. doi: 10.1126/science.8091229.
4
Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
Nature. 2011 Sep 14;477(7365):471-6. doi: 10.1038/nature10403.
5
Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: characterization of the 54 kb right terminal CDC15-FLO1-PHO11 region.
Yeast. 1997 Oct;13(13):1251-63. doi: 10.1002/(sici)1097-0061(199710)13:13<1251::aid-yea174>3.3.co;2-6.
6
Verification of a new gene on Saccharomyces cerevisiae chromosome III.
Yeast. 2003 Jun;20(8):731-8. doi: 10.1002/yea.996.
7
Life with 6000 genes.
Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546.
8
SynV and SynX: A story more than DNA synthesis.
Sci China Life Sci. 2017 May;60(5):558-560. doi: 10.1007/s11427-017-9039-6. Epub 2017 May 5.
9
3D organization of synthetic and scrambled chromosomes.
Science. 2017 Mar 10;355(6329). doi: 10.1126/science.aaf4597.
10
tRNA genes and retroelements in the yeast genome.
Nucleic Acids Res. 1998 Feb 1;26(3):689-96. doi: 10.1093/nar/26.3.689.

引用本文的文献

1
Scaling DNA engineering.
Trends Biotechnol. 2025 May 28. doi: 10.1016/j.tibtech.2025.05.002.
2
Synthetic biology in plants.
Plant Biotechnol (Tokyo). 2024 Sep 25;41(3):173-193. doi: 10.5511/plantbiotechnology.24.0630b.
3
Towards the first synthetic eukaryotic cell.
Biosaf Health. 2024 Nov 15;6(6):376-382. doi: 10.1016/j.bsheal.2024.11.001. eCollection 2024 Dec.
5
Design and structure of overlapping regions in PCA via deep learning.
Synth Syst Biotechnol. 2024 Dec 27;10(2):442-451. doi: 10.1016/j.synbio.2024.12.007. eCollection 2025 Jun.
7
Recent advances in genome-scale engineering in and their applications.
Eng Microbiol. 2023 Sep 15;4(1):100115. doi: 10.1016/j.engmic.2023.100115. eCollection 2024 Mar.
8
Link Between Individual Codon Frequencies and Protein Expression: Going Beyond Codon Adaptation Index.
Int J Mol Sci. 2024 Oct 29;25(21):11622. doi: 10.3390/ijms252111622.
9
The design and engineering of synthetic genomes.
Nat Rev Genet. 2025 May;26(5):298-319. doi: 10.1038/s41576-024-00786-y. Epub 2024 Nov 6.
10
Reaching New Heights in Genetic Code Manipulation with High Throughput Screening.
Chem Rev. 2024 Nov 13;124(21):12145-12175. doi: 10.1021/acs.chemrev.4c00329. Epub 2024 Oct 17.

本文引用的文献

1
The Saccharomyces cerevisiae SCRaMbLE system and genome minimization.
Bioeng Bugs. 2012 May-Jun;3(3):168-71. doi: 10.4161/bbug.19543. Epub 2012 May 1.
2
Assembling large DNA segments in yeast.
Methods Mol Biol. 2012;852:133-50. doi: 10.1007/978-1-61779-564-0_11.
3
Assembling DNA fragments by USER fusion.
Methods Mol Biol. 2012;852:77-95. doi: 10.1007/978-1-61779-564-0_7.
4
Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
Nature. 2011 Sep 14;477(7365):471-6. doi: 10.1038/nature10403.
5
Precise manipulation of chromosomes in vivo enables genome-wide codon replacement.
Science. 2011 Jul 15;333(6040):348-53. doi: 10.1126/science.1205822.
6
Creation of a bacterial cell controlled by a chemically synthesized genome.
Science. 2010 Jul 2;329(5987):52-6. doi: 10.1126/science.1190719. Epub 2010 May 20.
7
Programming cells by multiplex genome engineering and accelerated evolution.
Nature. 2009 Aug 13;460(7257):894-898. doi: 10.1038/nature08187. Epub 2009 Jul 26.
8
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Nat Methods. 2009 May;6(5):343-5. doi: 10.1038/nmeth.1318. Epub 2009 Apr 12.
9
One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20404-9. doi: 10.1073/pnas.0811011106. Epub 2008 Dec 10.
10
Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course.
Genetics. 2009 Jan;181(1):13-21. doi: 10.1534/genetics.108.096784. Epub 2008 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验