Guerreiro Ana C L, Benevento Marco, Lehmann Robert, van Breukelen Bas, Post Harm, Giansanti Piero, Maarten Altelaar A F, Axmann Ilka M, Heck Albert J R
From the ‡Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; §Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands;
¶Institute for Theoretical Biology (ITB), Humboldt-Universitaet zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany;
Mol Cell Proteomics. 2014 Aug;13(8):2042-55. doi: 10.1074/mcp.M113.035840. Epub 2014 Mar 27.
Circadian rhythms are self-sustained and adjustable cycles, typically entrained with light/dark and/or temperature cycles. These rhythms are present in animals, plants, fungi, and several bacteria. The central mechanism behind these "pacemakers" and the connection to the circadian regulated pathways are still poorly understood. The circadian rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus) is highly robust and controlled by only three proteins, KaiA, KaiB, and KaiC. This central clock system has been extensively studied functionally and structurally and can be reconstituted in vitro. These characteristics, together with a relatively small genome (2.7 Mbp), make S. elongatus an ideal model system for the study of circadian rhythms. Different approaches have been used to reveal the influence of the central S. elongatus clock on rhythmic gene expression, rhythmic mRNA abundance, rhythmic DNA topology changes, and cell division. However, a global analysis of its proteome dynamics has not been reported yet. To uncover the variation in protein abundances during 48 h under light and dark cycles (12:12 h), we used quantitative proteomics, with TMT 6-plex isobaric labeling. We queried the S. elongatus proteome at 10 different time points spanning a single 24-h period, leading to 20 time points over the full 48-h period. Employing multidimensional separation and high-resolution mass spectrometry, we were able to find evidence for a total of 82% of the S. elongatus proteome. Of the 1537 proteins quantified over the time course of the experiment, only 77 underwent significant cyclic variations. Interestingly, our data provide evidence for in- and out-of-phase correlation between mRNA and protein levels for a set of specific genes and proteins. As a range of cyclic proteins are functionally not well annotated, this work provides a resource for further studies to explore the role of these proteins in the cyanobacterial circadian rhythm.
昼夜节律是自我维持且可调节的周期,通常与光/暗和/或温度周期同步。这些节律存在于动物、植物、真菌和几种细菌中。这些“生物钟”背后的核心机制以及与昼夜节律调节途径的联系仍知之甚少。聚球藻(Synechococcus elongatus)PCC 7942(简称S. elongatus)的昼夜节律非常稳定,仅由三种蛋白质KaiA、KaiB和KaiC控制。这个核心时钟系统已经在功能和结构上进行了广泛研究,并且可以在体外重建。这些特性,再加上相对较小的基因组(2.7 Mbp),使S. elongatus成为研究昼夜节律的理想模型系统。人们已经使用了不同的方法来揭示S. elongatus核心时钟对节律性基因表达、节律性mRNA丰度、节律性DNA拓扑结构变化和细胞分裂的影响。然而,尚未有对其蛋白质组动态进行全面分析的报道。为了揭示在48小时明暗周期(12:12小时)下蛋白质丰度的变化,我们使用了TMT 6重等压标记定量蛋白质组学方法。我们在跨越单个24小时周期的10个不同时间点对S. elongatus蛋白质组进行了检测,在整个48小时周期内共得到20个时间点的数据。通过多维分离和高分辨率质谱分析,我们能够找到占S. elongatus蛋白质组总量82%的证据。在实验过程中定量的1537种蛋白质中,只有77种经历了显著的周期性变化。有趣的是,我们的数据为一组特定基因和蛋白质的mRNA水平与蛋白质水平之间的同相和异相相关性提供了证据。由于一系列周期性蛋白质在功能上注释不足,这项工作为进一步研究这些蛋白质在蓝藻昼夜节律中的作用提供了资源。