Suppr超能文献

一种新型的受生物启发的局部特征描述符。

A novel biologically inspired local feature descriptor.

作者信息

Zhang Yun, Tian Tian, Tian Jinwen, Gong Junbin, Ming Delie

机构信息

National Key Laboratory of Science and Technology on Multi-spectral Information Processing, School of Automation, Huazhong University of Science and Technology, Wuhan, 430074, China,

出版信息

Biol Cybern. 2014 Jun;108(3):275-90. doi: 10.1007/s00422-013-0583-1. Epub 2014 Mar 28.

Abstract

Local feature descriptor is a fundamental representation for image patch which has been extensively used in many computer vision applications. In this paper, different from state-of-the-art features, a novel biologically inspired local descriptor (BILD) is proposed based on the visual information processing mechanism of ventral pathway in human brain. The local features used for constructing BILD are extracted by a two-layer network, which corresponds to the simple-to-complex cell hierarchy in the primary visual cortex (V1). It works in a similar way as the simple cell and complex cell do to get responses by applying the lateral inhibition from different orientations and operating an improved cortical pooling. To enhance the distinctiveness of BILD, we combine the local features from different orientations. Extensive evaluations have been performed for image matching and object recognition. Experimental results reveal that our proposed BILD outperforms many widely used descriptors such as SIFT and SURF, which demonstrate its efficiency for representing local regions.

摘要

局部特征描述符是图像块的一种基本表示形式,已在许多计算机视觉应用中广泛使用。在本文中,与现有最先进的特征不同,基于人类大脑腹侧通路的视觉信息处理机制,提出了一种新颖的受生物启发的局部描述符(BILD)。用于构建BILD的局部特征由一个两层网络提取,该网络对应于初级视觉皮层(V1)中从简单细胞到复杂细胞的层次结构。它的工作方式与简单细胞和复杂细胞类似,通过应用来自不同方向的侧向抑制并进行改进的皮层池化来获得响应。为了增强BILD的独特性,我们将来自不同方向的局部特征进行了组合。针对图像匹配和目标识别进行了广泛的评估。实验结果表明,我们提出的BILD优于许多广泛使用的描述符,如SIFT和SURF,这证明了其在表示局部区域方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验