Suppr超能文献

基于图嵌入的局部保持非负基学习

Locality preserving non-negative basis learning with graph embedding.

作者信息

Ghanbari Yasser, Herrington John, Gur Ruben C, Schultz Robert T, Verma Ragini

出版信息

Inf Process Med Imaging. 2013;23:316-27. doi: 10.1007/978-3-642-38868-2_27.

Abstract

The high dimensionality of connectivity networks necessitates the development of methods identifying the connectivity building blocks that not only characterize the patterns of brain pathology but also reveal representative population patterns. In this paper, we present a non-negative component analysis framework for learning localized and sparse sub-network patterns of connectivity matrices by decomposing them into two sets of discriminative and reconstructive bases. In order to obtain components that are designed towards extracting population differences, we exploit the geometry of the population by using a graphtheoretical scheme that imposes locality-preserving properties as well as maintaining the underlying distance between distant nodes in the original and the projected space. The effectiveness of the proposed framework is demonstrated by applying it to two clinical studies using connectivity matrices derived from DTI to study a population of subjects with ASD, as well as a developmental study of structural brain connectivity that extracts gender differences.

摘要

连接网络的高维度性使得有必要开发一些方法来识别连接构建块,这些构建块不仅能够表征脑病理学模式,还能揭示具有代表性的群体模式。在本文中,我们提出了一个非负成分分析框架,通过将连接矩阵分解为两组判别性和重建性基,来学习连接矩阵的局部化和稀疏子网模式。为了获得旨在提取群体差异的成分,我们利用一种图形理论方案来利用群体的几何结构,该方案具有保持局部性的属性,并在原始空间和投影空间中保持远距离节点之间的潜在距离。通过将所提出的框架应用于两项临床研究来证明其有效性,这两项研究使用从扩散张量成像(DTI)得出的连接矩阵来研究患有自闭症谱系障碍(ASD)的受试者群体,以及一项提取性别差异的脑结构连接发育研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d85/3974174/8ea13a220f5c/nihms475734f1.jpg

相似文献

1
3
Connectivity subnetwork learning for pathology and developmental variations.用于病理学和发育变异的连接性子网络学习
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):90-7. doi: 10.1007/978-3-642-40811-3_12.
4
Towards a Quantified Network Portrait of a Population.迈向人群的量化网络画像。
Inf Process Med Imaging. 2015;24:650-61. doi: 10.1007/978-3-319-19992-4_51.
7
Dominant component analysis of electrophysiological connectivity networks.电生理连接网络的主成分分析
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):231-8. doi: 10.1007/978-3-642-33454-2_29.
10
Fiber connectivity integrated brain activation detection.纤维连接整合脑激活检测
Inf Process Med Imaging. 2013;23:135-46. doi: 10.1007/978-3-642-38868-2_12.

本文引用的文献

1
Dominant component analysis of electrophysiological connectivity networks.电生理连接网络的主成分分析
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):231-8. doi: 10.1007/978-3-642-33454-2_29.
4
Generative-discriminative basis learning for medical imaging.基于生成-判别式的医学影像基础学习。
IEEE Trans Med Imaging. 2012 Jan;31(1):51-69. doi: 10.1109/TMI.2011.2162961. Epub 2011 Jul 25.
5
Linear and nonlinear projective nonnegative matrix factorization.线性和非线性投影非负矩阵分解
IEEE Trans Neural Netw. 2010 May;21(5):734-49. doi: 10.1109/TNN.2010.2041361. Epub 2010 Mar 25.
7
Graph embedding and extensions: a general framework for dimensionality reduction.图嵌入与扩展:降维的通用框架
IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):40-51. doi: 10.1109/TPAMI.2007.12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验