Nagano K, Harel M, Takezawa M
Faculty of Pharmaceutical Sciences, University of Tokyo, Japan.
J Theor Biol. 1988 Sep 17;134(2):199-256. doi: 10.1016/s0022-5193(88)80202-9.
A model for the tertiary structure of 23S, 16S and 5S ribosomal RNA molecules interacting with three tRNA molecules is presented using the secondary structure models common to E. coli, Z. mays chloroplast, and mammalian mitochondria. This ribosomal RNA model is represented by phosphorus atoms which are separated by 5.9 A in the standard A-form double helix conformation. The accumulated proximity data summarized in Table 1 were used to deduce the most reasonable assembly of helices separated from each other by at least 6.2 A. Straight-line approximation for single strands was adopted to describe the maximum allowed distance between helices. The model of a ribosome binding three tRNA molecules by Nierhaus (1984), the stereochemical model of codon-anticodon interaction by Sundaralingam et al. (1975) and the ribosomal transpeptidation model, forming an alpha-helical nascent polypeptide, by Lim & Spirin (1986), were incorporated in this model. The distribution of chemically modified nucleotides, cross-linked sites, invariant and missing regions in mammalian mitochondrial rRNAs are indicated on the model.
利用大肠杆菌、玉米叶绿体和哺乳动物线粒体共有的二级结构模型,提出了一个23S、16S和5S核糖体RNA分子与三个tRNA分子相互作用的三级结构模型。该核糖体RNA模型由磷原子表示,在标准A-型双螺旋构象中,磷原子之间的间距为5.9埃。表1中总结的累积邻近数据用于推断彼此至少相隔6.2埃的螺旋的最合理组装。采用单链的直线近似法来描述螺旋之间的最大允许距离。尼尔豪斯(1984年)的核糖体结合三个tRNA分子的模型、桑达拉林加姆等人(1975年)的密码子-反密码子相互作用的立体化学模型以及林和斯皮林(1986年)的形成α-螺旋新生多肽的核糖体转肽模型都被纳入了该模型。模型上标注了哺乳动物线粒体rRNA中化学修饰核苷酸、交联位点、不变区和缺失区的分布。