Federici Antoine, Dubois Arnaud
Opt Lett. 2014 Mar 15;39(6):1374-7. doi: 10.1364/OL.39.001374.
Full-field optical coherence microscopy is an established optical technology based on low-coherence interference microscopy for high-resolution imaging of semitransparent samples. In this Letter, we demonstrate an extension of the technique using a visible to short-wavelength infrared camera and a halogen lamp to image in three distinct bands centered at 635, 870, and 1170 nm. Reflective microscope objectives are employed to minimize chromatic aberrations of the imaging system operating over a spectral range extending from 530 to 1700 nm. Constant 1.9-μm axial resolution (measured in air) is achieved in each of the three bands. A dynamic dispersion compensation system is set up to preserve the axial resolution when the imaging depth is varied. The images can be analyzed in the conventional RGB color channels representation to generate three-dimensional images with enhanced contrast. The capability of the system is illustrated by imaging different samples.
全场光学相干显微镜是一种基于低相干干涉显微镜的成熟光学技术,用于对半透明样品进行高分辨率成像。在本信函中,我们展示了该技术的一种扩展,使用可见到短波长红外相机和卤素灯在以635、870和1170 nm为中心的三个不同波段进行成像。采用反射式显微镜物镜,以尽量减少在530至1700 nm光谱范围内运行的成像系统的色差。在三个波段中的每一个波段都实现了恒定的1.9μm轴向分辨率(在空气中测量)。设置了一个动态色散补偿系统,以便在成像深度变化时保持轴向分辨率。可以在传统的RGB颜色通道表示中分析图像,以生成具有增强对比度的三维图像。通过对不同样品成像来说明该系统的能力。