Ratté Stéphanie, Zhu Yi, Lee Kwan Yeop, Prescott Steven A
Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
Elife. 2014 Apr 1;3:e02370. doi: 10.7554/eLife.02370.
Neuropathic pain remains notoriously difficult to treat despite numerous drug targets. Here, we offer a novel explanation for this intractability. Computer simulations predicted that qualitative changes in primary afferent excitability linked to neuropathic pain arise through a switch in spike initiation dynamics when molecular pathologies reach a tipping point (criticality), and that this tipping point can be reached via several different molecular pathologies (degeneracy). We experimentally tested these predictions by pharmacologically blocking native conductances and/or electrophysiologically inserting virtual conductances. Multiple different manipulations successfully reproduced or reversed neuropathic changes in primary afferents from naïve or nerve-injured rats, respectively, thus confirming the predicted criticality and its degenerate basis. Degeneracy means that several different molecular pathologies are individually sufficient to cause hyperexcitability, and because several such pathologies co-occur after nerve injury, that no single pathology is uniquely necessary. Consequently, single-target-drugs can be circumvented by maladaptive plasticity in any one of several ion channels. DOI: http://dx.doi.org/10.7554/eLife.02370.001.
尽管有众多药物靶点,但神经性疼痛仍然极难治疗。在此,我们为这种难治性提供了一种全新的解释。计算机模拟预测,当分子病变达到临界点(临界状态)时,与神经性疼痛相关的初级传入神经兴奋性的质性变化是通过峰电位起始动力学的转变产生的,并且这个临界点可以通过几种不同的分子病变(简并性)达到。我们通过药理学阻断天然电导和/或电生理学插入虚拟电导对这些预测进行了实验验证。多种不同的操作分别成功再现或逆转了来自未受伤或神经损伤大鼠的初级传入神经的神经性变化,从而证实了预测的临界状态及其简并基础。简并性意味着几种不同的分子病变各自都足以导致兴奋性过高,并且由于神经损伤后会同时出现几种此类病变,所以没有单一病变是唯一必需的。因此,单靶点药物可能会被几种离子通道中任何一种的适应性不良可塑性所规避。DOI: http://dx.doi.org/10.7554/eLife.02370.001 。