Torreira Eva, Seabra Ana Rita, Marriott Hazel, Zhou Min, Llorca Óscar, Robinson Carol V, Carvalho Helena G, Fernández-Tornero Carlos, Pereira Pedro José Barbosa
Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
Molecular Biology of Nitrogen Assimilation, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
Acta Crystallogr D Biol Crystallogr. 2014 Apr;70(Pt 4):981-93. doi: 10.1107/S1399004713034718. Epub 2014 Mar 19.
The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.
高等植物中氮同化的第一步,即将氨以能量驱动的方式掺入谷氨酸,是由谷氨酰胺合成酶催化的。这一核心过程产生了易于代谢的谷氨酰胺,而谷氨酰胺又是随后所有含氮化合物生物合成的基础。谷氨酰胺合成酶所发挥的关键作用使其成为除草化合物的主要作用靶点,同时也是提高作物产量的一个合适干预点。尽管大多数农作物是双子叶植物,但对于这些生物体中谷氨酰胺合成酶的结构组织以及不同同工型之间的功能差异却知之甚少。在此,报道了来自模式豆科植物蒺藜苜蓿的两种谷氨酰胺合成酶同工型的结构特征:细胞质GSII-1a的晶体结构以及质体定位的GSII-2a的电子冷冻显微镜重建结构。这些结构模型共同揭示了双子叶植物谷氨酰胺合成酶的十聚体组织形式,由两个通过环间环弱连接的五聚体环组成。此外,这些动态环的重排改变了环的相对取向,提示了一种类似拉链的机制将它们组装成十聚体酶。最后,蒺藜苜蓿GSII-1a的原子结构为该酶家族中除草剂抗性的结构决定因素提供了重要见解,为开发抗除草剂植物开辟了新途径。