J Air Waste Manag Assoc. 2014 Mar;64(3):360-71. doi: 10.1080/10962247.2013.839968.
During August and September of 2012, researchers conducted a microenvironmental (ME) monitoring study in Durham, North Carolina, using two 2B Technologies O3 monitors: a dual-beam model 205 Federal Equivalent Method (FEM) 254 nm photometer and a newly developed model 211 interference-free dual-beam photometer. The two monitors were mounted in a wheeled, fan-cooled suitcase together with a battery, a disposable N2O cartridge for the model 211 monitor and filtered sample lines. A scripted technician made paired O3 measurements in a variety of MEs within 2 miles of a fixed-site FEM O3 photometer at the Durham National GuardArmory. The ratio of the 211 to Armory O3 concentrations tended to be lowest (<0.3) for 45 indoor MEs and highest (>0.8) for 104 outdoor MEs. The mean values of the ratio for in-vehicle MEs tended to fall between 0.2 and 0.7--the mean for all 27 in-car tests was 0.3. The ratio values for indoor MEs tended to be higher when the enclosure was well ventilated. The outdoor ratios tended to be lower when the measurement was made downwind of nearby roadways, likely due to exhaust NO. The in-vehicle ratios tended to be larger with windows open than closed; the smallest occurred with closed windows, active air conditioning, and vent recirculation. The 205 - 211 measurement differences were generally small, with 94% of the 176 sample differences below 5 ppb. Five differences were above 10 ppb with the largest values (173.9 and 63.6 ppb) occurring inside a violin repair shop. Roadway proximity tended to increase the differences for outdoor locations. The largest in-vehicle difference (6 ppb) occurred at a convenience store service station. As addressed in regulatory models, such differences may reduce estimated population O3 exposure by 30-50% in indoor and in-vehicle MEs where individuals spend more than 80% of their time.
Computer models used to estimate exposures of human populations-such as the Air Pollution Exposure Model (APEX) developed by the U.S. Environmental Protection Agency-can be improved by use of direct microenvironmental (ME) measurement comparisons to nearby fixed-site monitors used for determining regulatory compliance. Simultaneous measurements made by model 211 and model 205 ozone monitors in a variety of MEs indicated that Federal Equivalent Method photometers similar to the model 205 may read high in the presence of various interferences associated with indoor sources and motor vehicles, increasing modeled exposures in such environments by 20-100%.
在 2012 年 8 月和 9 月期间,研究人员在北卡罗来纳州达勒姆进行了一项微环境(ME)监测研究,使用了两台 2B 技术 O3 监测器:双光束模型 205 联邦等效方法(FEM)254nm 光度计和新开发的模型 211 无干扰双光束光度计。这两个监测器与一个电池、一个用于模型 211 监测器的一次性 N2O 盒和过滤样品线一起安装在一个带轮的、风扇冷却的手提箱中。一位编写脚本的技术人员在距离达勒姆国民警卫队军械库的固定站点 FEM O3 光度计 2 英里范围内的各种 ME 中进行了成对的 O3 测量。211 与军械库 O3 浓度的比值在 45 个室内 ME 中最低(<0.3),在 104 个室外 ME 中最高(>0.8)。在车内 ME 中的平均值倾向于落在 0.2 到 0.7 之间——所有 27 个车内测试的平均值为 0.3。当外壳通风良好时,室内 ME 的比值趋于更高。当测量在附近道路的下风处进行时,室外比值趋于更低,可能是由于排气 NO。当车窗打开时,车内比值往往大于关闭时;当车窗关闭、空调活跃和通风再循环时,比值最小。205-211 测量差异通常很小,176 个样本差异中有 94%低于 5 ppb。有 5 个差异超过 10 ppb,最大的差异值(173.9 和 63.6 ppb)发生在小提琴修理店内部。道路接近度往往会增加室外位置的差异。最大的车内差异(6 ppb)发生在一个便利店服务站。正如监管模型中所讨论的,在个体超过 80%的时间花费在室内和车内 ME 中的情况下,此类差异可能会使估计的人群 O3 暴露减少 30-50%。
用于估计人口暴露的计算机模型,例如美国环境保护署开发的空气污染暴露模型(APEX),可以通过使用直接微环境(ME)测量与用于确定法规遵从性的附近固定站点监测器进行比较来改进。在各种 ME 中,模型 211 和模型 205 臭氧监测器同时进行的测量表明,与模型 205 类似的联邦等效方法光度计在存在与室内源和机动车辆相关的各种干扰时可能读数偏高,从而使此类环境中的建模暴露增加 20-100%。