Breen Michael, Isakov Vlad, Seppanen Catherine, Arunachalam Saravanan, Breen Miyuki, Prince Steven, Long Thomas, Heist David, Deshmukh Parikshit, Appel K Wyat, Hogrefe Christian, Murphy Benjamin, Nolte Christopher, Owen Chris, Pouliot George, Pye Havala, Rosati Jacky
Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
Sci Total Environ. 2025 Jan 10;959:178200. doi: 10.1016/j.scitotenv.2024.178200. Epub 2024 Dec 29.
Epidemiologic studies of ambient fine particulate matter (PM) and ozone (O) often use outdoor concentrations from central-site monitors or air quality model estimates as exposure surrogates, which can result in exposure errors. We previously developed an exposure model called TracMyAir, which is an iPhone application that determines seven tiers of individual-level exposure metrics for ambient PM and O using outdoor concentrations, home building characteristics, weather, time-activities. The exposure metrics with increasing information needs and complexity include: outdoor concentration (C, Tier 1), building infiltration factor (F, Tier 2), indoor concentration (C, Tier 3), time spent in microenvironments (ME) (T, Tier 4), personal exposure factor (F, Tier 5), exposure (E, Tier 6), and inhaled dose (D, Tier 7). In this study, we extended TracMyAir with two sets of additional features: (1) time-resolved exposures using smartphone geolocations with a ME classification model (MicroTrac) and official PM and O monitoring network, and (2) exposures based on low-cost outdoor PurpleAir (PA) PM monitoring network, non-ambient indoor PM using indoor-outdoor PA monitors, and inhaled dose based on physical activity data from smartphone and smartwatch. To demonstrate the two sets of extended features, we applied TracMyAir to estimate hourly PM and O exposure metrics for two corresponding panel studies with participants living in central North Carolina, USA. For Tier 4, the MicroTrac estimates were compared with 24-h diary data, and correctly classified the ME for 97 % of the daily time spent by the participants. Overall, the TracMyAir estimates showed considerable temporal and building-to-building variability of F, and C (Tiers 2-3), and person-to-person variability of C, T, F, E, and D (Tiers 1, 4-7). Our study demonstrates the capability of extending TracMyAir with air quality monitors, location-activity sensors, and models to determine fine-scale exposures, in support of epidemiologic studies and public health strategies to help reduce exposures to air pollutants.
对环境细颗粒物(PM)和臭氧(O₃)的流行病学研究通常将中心站点监测器的室外浓度或空气质量模型估计值用作暴露替代指标,这可能会导致暴露误差。我们之前开发了一种名为TracMyAir的暴露模型,它是一款iPhone应用程序,可利用室外浓度、房屋建筑特征、天气、时间活动情况来确定环境PM和O₃的七个层级的个体水平暴露指标。随着信息需求和复杂性增加,这些暴露指标包括:室外浓度(C,第1层级)、建筑物渗透因子(F,第2层级)、室内浓度(C,第3层级)、在微环境(ME)中花费的时间(T,第4层级)、个人暴露因子(F,第5层级)、暴露量(E,第6层级)和吸入剂量(D,第7层级)。在本研究中,我们为TracMyAir扩展了两组附加功能:(1)使用智能手机地理位置、ME分类模型(MicroTrac)和官方PM及O₃监测网络进行时间分辨暴露分析;(2)基于低成本的室外PurpleAir(PA)PM监测网络、使用室内 - 室外PA监测器的非环境室内PM以及基于智能手机和智能手表的身体活动数据的吸入剂量进行暴露分析。为了展示这两组扩展功能,我们将TracMyAir应用于估算美国北卡罗来纳州中部地区两项相应群组研究中参与者每小时的PM和O₃暴露指标。对于第4层级,将MicroTrac的估计值与24小时日记数据进行了比较,并且正确分类了参与者97%的日常时间所处于的微环境。总体而言,TracMyAir的估计值显示出F、C(第2 - 3层级)在时间和建筑物之间存在相当大的变异性,以及C、T、F、E和D(第1、4 - 7层级)在人与人之间存在变异性。我们的研究证明了通过空气质量监测器、位置 - 活动传感器和模型扩展TracMyAir以确定精细尺度暴露的能力,以支持流行病学研究和公共卫生策略,帮助减少空气污染物暴露。