Suppr超能文献

简化模型捕捉到了核糖开关中 Mg(2+)-RNA 相互作用的自由能。

Reduced model captures Mg(2+)-RNA interaction free energy of riboswitches.

机构信息

Center for Theoretical Biological Physics and Department of Physics and Astronomy, Rice University, Houston, Texas.

Department of Physics, Northeastern University, Boston, Massachusetts.

出版信息

Biophys J. 2014 Apr 1;106(7):1508-19. doi: 10.1016/j.bpj.2014.01.042.

Abstract

The stability of RNA tertiary structures depends heavily on Mg(2+). The Mg(2+)-RNA interaction free energy that stabilizes an RNA structure can be computed experimentally through fluorescence-based assays that measure Γ2+, the number of excess Mg(2+) associated with an RNA molecule. Previous explicit-solvent simulations predict that the majority of excess Mg(2+) ions interact closely and strongly with the RNA, unlike monovalent ions such as K(+), suggesting that an explicit treatment of Mg(2+) is important for capturing RNA dynamics. Here we present a reduced model that accurately reproduces the thermodynamics of Mg(2+)-RNA interactions. This model is able to characterize long-timescale RNA dynamics coupled to Mg(2+) through the explicit representation of Mg(2+) ions. KCl is described by Debye-Hückel screening and a Manning condensation parameter, which represents condensed K(+) and models its competition with condensed Mg(2+). The model contains one fitted parameter, the number of condensed K(+) ions in the absence of Mg(2+). Values of Γ2+ computed from molecular dynamics simulations using the model show excellent agreement with both experimental data on the adenine riboswitch and previous explicit-solvent simulations of the SAM-I riboswitch. This agreement confirms the thermodynamic accuracy of the model via the direct relation of Γ2+ to the Mg(2+)-RNA interaction free energy, and provides further support for the predictions from explicit-solvent calculations. This reduced model will be useful for future studies of the interplay between Mg(2+) and RNA dynamics.

摘要

RNA 三级结构的稳定性在很大程度上依赖于 Mg(2+)。通过荧光测定法测量 Γ2+(与 RNA 分子结合的过量 Mg(2+)的数量),可以实验计算稳定 RNA 结构的 Mg(2+)-RNA 相互作用自由能。先前的明溶剂模拟预测,与单价离子如 K(+)不同,大多数过量 Mg(2+)离子与 RNA 密切且强烈相互作用,这表明对 Mg(2+)进行显式处理对于捕捉 RNA 动力学很重要。在这里,我们提出了一个简化模型,该模型可以准确再现 Mg(2+)-RNA 相互作用的热力学。该模型能够通过显式表示 Mg(2+)离子来描述与 Mg(2+)耦合的长时标 RNA 动力学。KCl 通过德拜-休克尔屏蔽和曼宁凝聚参数来描述,该参数代表凝聚的 K(+)并模拟其与凝聚的 Mg(2+)的竞争。该模型包含一个拟合参数,即在没有 Mg(2+)的情况下凝聚的 K(+)离子的数量。使用该模型通过分子动力学模拟计算的 Γ2+值与腺嘌呤核糖开关的实验数据和 SAM-I 核糖开关的先前明溶剂模拟结果非常吻合。这种一致性通过 Γ2+与 Mg(2+)-RNA 相互作用自由能的直接关系证实了模型的热力学准确性,并为明溶剂计算的预测提供了进一步的支持。该简化模型将有助于未来研究 Mg(2+)和 RNA 动力学之间的相互作用。

相似文献

1
Reduced model captures Mg(2+)-RNA interaction free energy of riboswitches.
Biophys J. 2014 Apr 1;106(7):1508-19. doi: 10.1016/j.bpj.2014.01.042.
2
A magnesium-induced triplex pre-organizes the SAM-II riboswitch.
PLoS Comput Biol. 2017 Mar 1;13(3):e1005406. doi: 10.1371/journal.pcbi.1005406. eCollection 2017 Mar.
3
Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
Methods Enzymol. 2015;553:235-58. doi: 10.1016/bs.mie.2014.10.062. Epub 2015 Feb 3.
4
Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.
Biophys J. 2017 Jul 25;113(2):348-359. doi: 10.1016/j.bpj.2017.06.044.
5
Magnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch.
J Am Chem Soc. 2012 Jul 25;134(29):12043-53. doi: 10.1021/ja301454u. Epub 2012 Jul 16.
9
Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
Biochemistry. 2016 Jun 21;55(24):3349-60. doi: 10.1021/acs.biochem.5b00973. Epub 2016 Jun 13.
10
Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
Phys Rev E. 2019 Aug;100(2-1):022412. doi: 10.1103/PhysRevE.100.022412.

引用本文的文献

1
Transient ion-mediated interactions regulate subunit rotation in a eukaryotic ribosome.
bioRxiv. 2025 Aug 12:2025.08.09.669508. doi: 10.1101/2025.08.09.669508.
2
Implicit Solvent with Explicit Ions Generalized Born Model in Molecular Dynamics: Application to DNA.
J Chem Theory Comput. 2024 Oct 8;20(19):8724-8739. doi: 10.1021/acs.jctc.4c00833. Epub 2024 Sep 16.
5
Exploring the Energy Landscape of Riboswitches Using Collective Variables Based on Tertiary Contacts.
J Mol Biol. 2022 Sep 30;434(18):167788. doi: 10.1016/j.jmb.2022.167788. Epub 2022 Aug 11.
6
Getting to the bottom of lncRNA mechanism: structure-function relationships.
Mamm Genome. 2022 Jun;33(2):343-353. doi: 10.1007/s00335-021-09924-x. Epub 2021 Oct 12.
7
Directional translocation resistance of Zika xrRNA.
Nat Commun. 2020 Jul 27;11(1):3749. doi: 10.1038/s41467-020-17508-7.
8
Mg Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs.
Biophys J. 2020 Mar 24;118(6):1424-1437. doi: 10.1016/j.bpj.2020.01.021. Epub 2020 Jan 28.
9
Predicting Monovalent Ion Correlation Effects in Nucleic Acids.
ACS Omega. 2019 Aug 5;4(8):13435-13446. doi: 10.1021/acsomega.9b01689. eCollection 2019 Aug 20.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
The impact of a ligand binding on strand migration in the SAM-I riboswitch.
PLoS Comput Biol. 2013;9(5):e1003069. doi: 10.1371/journal.pcbi.1003069. Epub 2013 May 16.
3
Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.
Biopolymers. 2013 Dec;99(12):1105-13. doi: 10.1002/bip.22249.
4
Coarse-grained model for predicting RNA folding thermodynamics.
J Phys Chem B. 2013 May 2;117(17):4901-11. doi: 10.1021/jp401087x. Epub 2013 Apr 16.
5
The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch.
Nucleic Acids Res. 2013 Feb 1;41(3):1922-35. doi: 10.1093/nar/gks978. Epub 2012 Dec 20.
6
Hidden complexity in the isomerization dynamics of Holliday junctions.
Nat Chem. 2012 Nov;4(11):907-14. doi: 10.1038/nchem.1463. Epub 2012 Oct 7.
7
Predicting ion-nucleic acid interactions by energy landscape-guided sampling.
J Chem Theory Comput. 2012 Jun 12;8(6):2095-2101. doi: 10.1021/ct300227a. Epub 2012 Apr 30.
8
Energy landscape of knotted protein folding.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17783-8. doi: 10.1073/pnas.1201804109. Epub 2012 Aug 13.
9
Magnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch.
J Am Chem Soc. 2012 Jul 25;134(29):12043-53. doi: 10.1021/ja301454u. Epub 2012 Jul 16.
10
The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function.
J Phys Chem B. 2012 Jul 26;116(29):8692-702. doi: 10.1021/jp300852d. Epub 2012 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验