Suppr超能文献

相反的微管马达在 ER 到高尔基体运输过程中控制着运动性、形态和货物分离。

Opposing microtubule motors control motility, morphology and cargo segregation during ER-to-Golgi transport.

机构信息

Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.

Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK

出版信息

Biol Open. 2014 Apr 4;3(5):307-13. doi: 10.1242/bio.20147633.

Abstract

We recently demonstrated that dynein and kinesin motors drive multiple aspects of endosomal function in mammalian cells. These functions include driving motility, maintaining morphology (notably through providing longitudinal tension to support vesicle fission), and driving cargo sorting. Microtubule motors drive bidirectional motility during traffic between the endoplasmic reticulum (ER) and Golgi. Here, we have examined the role of microtubule motors in transport carrier motility, morphology, and domain organization during ER-to-Golgi transport. We show that, consistent with our findings for endosomal dynamics, microtubule motor function during ER-to-Golgi transport of secretory cargo is required for motility, morphology, and cargo sorting within vesicular tubular carriers en route to the Golgi. Our data are consistent with previous findings that defined roles for dynein-1, kinesin-1 (KIF5B) and kinesin-2 in this trafficking step. Our high resolution tracking data identify some intriguing aspects. Depletion of kinesin-1 reduces the number of motile structures seen, which is in line with other findings relating to the role of kinesin-1 in ER export. However, those transport carriers that were produced had a much greater run length suggesting that this motor can act as a brake on anterograde motility. Kinesin-2 depletion did not significantly reduce the number of motile transport carriers but did cause a similar increase in run length. These data suggest that kinesins act as negative regulators of ER-to-Golgi transport. Depletion of dynein not only reduced the number of motile carriers formed but also caused tubulation of carriers similar to that seen for sorting nexin-coated early endosomes. Our data indicated that the previously observed anterograde-retrograde polarity of transport carriers in transit to the Golgi from the ER is maintained by microtubule motor function.

摘要

我们最近证明,动力蛋白和驱动蛋白马达驱动哺乳动物细胞内多个方面的内体功能。这些功能包括驱动运动、维持形态(特别是通过提供纵向张力来支持囊泡分裂),以及驱动货物分拣。微管马达在内质网 (ER) 和高尔基体之间的运输过程中驱动双向运动。在这里,我们研究了微管马达在 ER 到高尔基体运输过程中对运输载体运动性、形态和结构域组织的作用。我们表明,与我们对内体动力学的发现一致,微管马达在分泌货物 ER 到高尔基体运输过程中的功能对于囊泡管状载体在运输到高尔基体过程中的运动性、形态和货物分拣是必需的。我们的数据与先前的发现一致,即定义了动力蛋白-1、驱动蛋白-1(KIF5B)和驱动蛋白-2 在这一运输步骤中的作用。我们的高分辨率跟踪数据确定了一些有趣的方面。驱动蛋白-1 的耗竭减少了可见的运动结构的数量,这与其他关于驱动蛋白-1在 ER 输出中的作用的发现一致。然而,产生的那些运输载体的运行长度要长得多,这表明该马达可以作为正向运动的制动器。驱动蛋白-2 的耗竭并没有显著减少运动性运输载体的数量,但确实导致运行长度的相似增加。这些数据表明驱动蛋白作为 ER 到高尔基体运输的负调控因子。动力蛋白的耗竭不仅减少了形成的运动载体的数量,而且还导致载体的管状化,类似于分选连接蛋白包被的早期内体。我们的数据表明,在从 ER 向高尔基体转运过程中,先前观察到的运输载体的正向-逆行极性是由微管马达功能维持的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddf7/4021352/5a027b66bede/bio-03-05-307-f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验