Suppr超能文献

动力蛋白的瞬时结合控制早期内体的双向长程运动。

Transient binding of dynein controls bidirectional long-range motility of early endosomes.

机构信息

Department of Biosciences, University of Exeter, Exeter EX4 4PE, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3618-23. doi: 10.1073/pnas.1015839108. Epub 2011 Feb 11.

Abstract

In many cell types, bidirectional long-range endosome transport is mediated by the opposing motor proteins dynein and kinesin-3. Here we use a fungal model system to investigate how both motors cooperate in early endosome (EE) motility. It was previously reported that Kin3, a member of the kinesin-3 family, and cytoplasmic dynein mediate bidirectional motility of EEs in the fungus Ustilago maydis. We fused the green fluorescent protein to the endogenous dynein heavy chain and the kin3 gene and visualized both motors and their cargo in the living cells. Whereas kinesin-3 was found on anterograde and retrograde EEs, dynein motors localize only to retrograde organelles. Live cell imaging shows that binding of retrograde moving dynein to anterograde moving endosomes changes the transport direction of the organelles. When dynein is leaving the EEs, the organelles switch back to anterograde kinesin-3-based motility. Quantitative photobleaching and comparison with nuclear pores as an internal calibration standard show that single dynein motors and four to five kinesin-3 motors bind to the organelles. These data suggest that dynein controls kinesin-3 activity on the EEs and thereby determines the long-range motility behavior of the organelles.

摘要

在许多细胞类型中,双向长程内体运输是由相反的马达蛋白动力蛋白和驱动蛋白-3 介导的。在这里,我们使用真菌模型系统来研究这两种马达蛋白如何在早期内体(EE)运动中协同作用。先前的研究报道称,驱动蛋白-3 家族的成员 Kin3 和细胞质动力蛋白介导了真菌 Ustilago maydis 中 EE 的双向运动。我们将绿色荧光蛋白与内源性动力蛋白重链和 kin3 基因融合,并在活细胞中可视化这两种马达蛋白及其货物。虽然驱动蛋白-3 被发现存在于顺行和逆行 EE 上,但动力蛋白马达仅定位于逆行细胞器。活细胞成像显示,逆行运动的动力蛋白与顺行运动的内体结合会改变细胞器的运输方向。当动力蛋白离开 EE 时,细胞器又切换回基于顺行驱动蛋白-3 的运动。定量光漂白并与核孔作为内部校准标准进行比较表明,单个动力蛋白马达和四到五个驱动蛋白-3 马达结合到细胞器上。这些数据表明,动力蛋白控制 EE 上驱动蛋白-3 的活性,从而决定了细胞器的长程运动行为。

相似文献

引用本文的文献

2
Vesicle fusion and release in neurons under dynamic mechanical equilibrium.动态力学平衡下神经元中的囊泡融合与释放
iScience. 2024 Apr 19;27(5):109793. doi: 10.1016/j.isci.2024.109793. eCollection 2024 May 17.
3
Endosome positioning coordinates spatially selective GPCR signaling.内体定位协调空间选择性 GPCR 信号转导。
Nat Chem Biol. 2024 Feb;20(2):151-161. doi: 10.1038/s41589-023-01390-7. Epub 2023 Jul 27.
4
Building the next generation of virtual cells to understand cellular biology.构建下一代虚拟细胞以理解细胞生物学。
Biophys J. 2023 Sep 19;122(18):3560-3569. doi: 10.1016/j.bpj.2023.04.006. Epub 2023 Apr 11.
7
Membrane Traffic in and Related Filamentous Fungi.膜泡运输与相关丝状真菌
J Fungi (Basel). 2021 Jul 1;7(7):534. doi: 10.3390/jof7070534.
8
Structure and Mechanics of Dynein Motors.动力蛋白的结构与力学性质。
Annu Rev Biophys. 2021 May 6;50:549-574. doi: 10.1146/annurev-biophys-111020-101511.

本文引用的文献

9
The reciprocal coordination and mechanics of molecular motors in living cells.活细胞中分子马达的相互协调与力学原理。
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3190-5. doi: 10.1073/pnas.0809849106. Epub 2009 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验