Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100, Lund, Sweden.
J Biomol NMR. 2014 May;59(1):23-9. doi: 10.1007/s10858-014-9826-2. Epub 2014 Apr 5.
Protein dynamics on the microsecond-millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R 1ρ experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimization. Using selective excitation and inversion of the narrow component of the (13)C doublet, the experiment achieves significant sensitivity enhancement in terms of both signal intensity and the fractional contribution from exchange to transverse relaxation; additional signal enhancement is achieved by optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-selected R 1ρ experiment by measuring exchange parameters for Y23 in bovine pancreatic trypsin inhibitor at a temperature of 328 K, where the ring flip is in the fast exchange regime with a mean waiting time between flips of 320 μs. The determined chemical shift difference matches perfectly with that measured from the NMR spectrum at lower temperatures, where separate peaks are observed for the two sites. We further show that potentially complicating effects of strong scalar coupling between protons (Weininger et al. in J Phys Chem B 117: 9241-9247, 2013b) can be accounted for using a simple expression, and provide recommendations for data acquisition when the studied system exhibits this behavior. The present method extends the repertoire of relaxation methods tailored for aromatic side chains by enabling studies of faster processes and improved control over artifacts due to strong coupling.
在微秒到毫秒时间尺度上的蛋白质动力学通常在生物学功能中起着关键作用。NMR 弛豫弥散实验是一种强大的方法,可用于具有特定部位分辨率的生物相关动力学研究,越来越多的关于酶催化、蛋白质折叠、配体结合和变构的出版物证明了这一点。迄今为止,大多数研究都探测了骨架酰胺或侧链甲基,而针对其他部位的实验则较少使用。芳香侧链是研究蛋白质动力学的有用探针,因为它们在蛋白质结合界面中过度表达,在酶中具有重要的催化作用,并且构成蛋白质内部的相当大一部分。在这里,我们提出了一种离共振 R 1ρ 实验,用于通过纵向和横向弛豫优化来测量选择性(13)C 标记蛋白质中芳香侧链的微秒到毫秒构象交换。通过窄(13)C 双峰的选择性激发和反转,该实验在信号强度和来自交换的横向弛豫的分数贡献方面都实现了显著的灵敏度增强;通过优化共价连接的(1)H 自旋的纵向弛豫恢复,可以实现额外的信号增强。我们通过在 328 K 温度下测量牛胰腺蛋白酶抑制剂中 Y23 的交换参数来验证 L-TROSY 选择的 R 1ρ 实验,其中环翻转处于快速交换状态,翻转之间的平均等待时间为 320 μs。确定的化学位移差与在较低温度下从 NMR 谱测量的值完全匹配,在较低温度下观察到两个位点的单独峰。我们还表明,可以使用简单的表达式来解释质子之间强标量耦合(Weininger 等人,J Phys Chem B 117:9241-9247,2013b)可能引起的复杂影响,并提供在研究系统表现出这种行为时进行数据采集的建议。该方法通过能够研究更快的过程和改善由于强耦合引起的伪影的控制,扩展了针对芳香侧链定制的弛豫方法的范围。