Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5403-8. doi: 10.1073/pnas.1314219111. Epub 2014 Mar 24.
The cerebellum ensures the smooth execution of movements, a task that requires accurate neural signaling on multiple time scales. Computational models of cerebellar timing mechanisms have suggested that temporal information in cerebellum-dependent behavioral tasks is in part computed locally in the cerebellar cortex. These models rely on the local generation of delayed signals spanning hundreds of milliseconds, yet the underlying neural mechanism remains elusive. Here we show that a granular layer interneuron, called the unipolar brush cell, is well suited to represent time intervals in a robust way in the cerebellar cortex. Unipolar brush cells exhibited delayed increases in excitatory synaptic input in response to presynaptic stimulation in mouse cerebellar slices. Depending on the frequency of stimulation, delays extended from zero up to hundreds of milliseconds. Such controllable protraction of delayed currents was the result of an unusual mode of synaptic integration, which was well described by a model of steady-state AMPA receptor activation. This functionality extends the capabilities of the cerebellum for adaptive control of behavior by facilitating appropriate output in a broad temporal window.
小脑确保运动的平稳执行,这一任务需要在多个时间尺度上进行精确的神经信号传递。小脑定时机制的计算模型表明,小脑依赖的行为任务中的时间信息部分是在小脑皮层中局部计算的。这些模型依赖于局部产生跨越数百毫秒的延迟信号,但潜在的神经机制仍然难以捉摸。在这里,我们表明一种称为单极刷状细胞的颗粒层中间神经元非常适合以稳健的方式在小脑皮层中表示时间间隔。单极刷状细胞在对小鼠小脑切片中突触前刺激的反应中表现出延迟的兴奋性突触输入增加。根据刺激的频率,延迟从零延伸到数百毫秒。这种可控制的延迟电流的拖曳是一种不寻常的突触整合模式的结果,该模式可以通过稳态 AMPA 受体激活的模型很好地描述。这种功能通过在广泛的时间窗口中促进适当的输出,扩展了小脑对行为进行自适应控制的能力。