Suppr超能文献

生物泵暗端的微生物控制

Microbial control of the dark end of the biological pump.

作者信息

Herndl Gerhard J, Reinthaler Thomas

机构信息

Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.

Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Texel, The Netherlands.

出版信息

Nat Geosci. 2013 Sep 1;6(9):718-724. doi: 10.1038/ngeo1921.

Abstract

A fraction of the carbon captured by phytoplankton in the sunlit surface ocean sinks to depth as dead organic matter and faecal material. The microbial breakdown of this material in the subsurface ocean generates carbon dioxide. Collectively, this microbially mediated flux of carbon from the atmosphere to the ocean interior is termed the biological pump. In recent decades it has become clear that the composition of the phytoplankton community in the surface ocean largely determines the quantity and quality of organic matter that sinks to depth. This settling organic matter, however, is not sufficient to meet the energy demands of microbes in the dark ocean. Two additional sources of organic matter have been identified: non-sinking organic particles of debated origin that escape capture by sediment traps and exhibit stable concentrations throughout the dark ocean, and microbes that convert inorganic carbon into organic matter. Whether these two sources can together account for the significant mismatch between organic matter consumption and supply in the dark ocean remains to be seen. It is clear, however, that the microbial community of the deep ocean works in a fundamentally different way from surface water communities.

摘要

在阳光照射的海洋表层,浮游植物捕获的一部分碳会以死亡的有机物质和粪便物质的形式沉入深海。海洋次表层中这些物质的微生物分解会产生二氧化碳。总体而言,这种由微生物介导的碳从大气向海洋内部的通量被称为生物泵。近几十年来,很明显海洋表层浮游植物群落的组成在很大程度上决定了沉入深海的有机物质的数量和质量。然而,这种沉降的有机物质不足以满足黑暗海洋中微生物的能量需求。已确定另外两种有机物质来源:来源存在争议的非沉降有机颗粒,它们躲过了沉积物捕获器的捕捉,并在整个黑暗海洋中呈现出稳定的浓度;以及将无机碳转化为有机物质的微生物。这两种来源能否共同解释黑暗海洋中有机物质消耗与供应之间的显著不匹配,仍有待观察。然而,很明显,深海的微生物群落与表层水群落的运作方式截然不同。

相似文献

1
Microbial control of the dark end of the biological pump.
Nat Geosci. 2013 Sep 1;6(9):718-724. doi: 10.1038/ngeo1921.
2
Evidence for non-selective preservation of organic matter in sinking marine particles.
Nature. 2001 Feb 15;409(6822):801-4. doi: 10.1038/35057247.
4
Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions.
mSphere. 2023 Jun 22;8(3):e0042022. doi: 10.1128/msphere.00420-22. Epub 2023 Apr 24.
5
Carbon Export in the Ocean: A Biologist's Perspective.
Ann Rev Mar Sci. 2023 Jan 16;15:357-381. doi: 10.1146/annurev-marine-032122-035153. Epub 2022 Sep 2.
6
3D intrusions transport active surface microbial assemblages to the dark ocean.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2319937121. doi: 10.1073/pnas.2319937121. Epub 2024 May 2.
7
Prokaryotic Response to Phytodetritus-Derived Organic Material in Epi- and Mesopelagic Antarctic Waters.
Front Microbiol. 2020 Jun 9;11:1242. doi: 10.3389/fmicb.2020.01242. eCollection 2020.
8
Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11824-11832. doi: 10.1073/pnas.1903080116. Epub 2019 May 24.
9
Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf.
Appl Environ Microbiol. 2022 May 10;88(9):e0021622. doi: 10.1128/aem.00216-22. Epub 2022 Apr 11.

引用本文的文献

1
The geologic history of marine dissolved organic carbon from iron oxides.
Nature. 2025 Aug 13. doi: 10.1038/s41586-025-09383-3.
3
Extracellular rRNA Profiling Reveals the Sinking and Cell Lysis Dynamics of Marine Microeukaryotes.
Environ Microbiol. 2025 Aug;27(8):e70164. doi: 10.1111/1462-2920.70164.
6
Unveiling ongoing biogeochemical dynamics of CDOM from surface to deep ocean.
Nat Commun. 2025 Jun 4;16(1):5202. doi: 10.1038/s41467-025-60510-0.
8
Special delivery of proteinaceous matter to deep-sea microbes.
Sci Adv. 2025 Mar 21;11(12):eadr0736. doi: 10.1126/sciadv.adr0736. Epub 2025 Mar 19.
9
Key bacteria decomposing animal and plant detritus in deep sea revealed via long-term incubation in different oceanic areas.
ISME Commun. 2024 Dec 10;4(1):ycae133. doi: 10.1093/ismeco/ycae133. eCollection 2024 Jan.

本文引用的文献

1
Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment.
Environ Microbiol Rep. 2011 Aug;3(4):449-58. doi: 10.1111/j.1758-2229.2010.00223.x. Epub 2010 Nov 24.
2
Prokaryotic responses to hydrostatic pressure in the ocean--a review.
Environ Microbiol. 2013 May;15(5):1262-74. doi: 10.1111/1462-2920.12084. Epub 2013 Feb 19.
3
Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):330-5. doi: 10.1073/pnas.1215340110. Epub 2012 Dec 20.
4
Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment.
Environ Microbiol. 2012 Jan;14(1):191-206. doi: 10.1111/j.1462-2920.2011.02598.x. Epub 2011 Oct 9.
5
Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean.
Science. 2011 Sep 2;333(6047):1296-300. doi: 10.1126/science.1203690.
6
Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.
Ann Rev Mar Sci. 2011;3:261-89. doi: 10.1146/annurev-marine-120709-142712.
8
Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean.
Nat Rev Microbiol. 2010 Aug;8(8):593-9. doi: 10.1038/nrmicro2386. Epub 2010 Jul 5.
9
High bicarbonate assimilation in the dark by Arctic bacteria.
ISME J. 2010 Dec;4(12):1581-90. doi: 10.1038/ismej.2010.69. Epub 2010 Jun 17.
10
Role of macroscopic particles in deep-sea oxygen consumption.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8287-91. doi: 10.1073/pnas.0913744107. Epub 2010 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验