Suppr超能文献

酵母线粒体同质性的启示:基因转换的多样化作用。

Enlightenment of yeast mitochondrial homoplasmy: diversified roles of gene conversion.

机构信息

Chemical Genetics Laboratory, RIKEN Advanced Science Institute/2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.

Biometal Science Laboratory, RIKEN SPring-8 Center/Mikazuki cho, Hyogo 679-5148 Japan.

出版信息

Genes (Basel). 2011 Feb 14;2(1):169-90. doi: 10.3390/genes2010169.

Abstract

Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell ("homoplasmy") during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3' single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes.

摘要

线粒体具有自己的基因组 DNA。与核基因组不同,每个细胞含有数百到数千份线粒体 DNA (mtDNA) 的拷贝。由于突变率高,mtDNA 的拷贝往往具有异质序列,但在营养细胞生长过程中或通过少数有性世代,其序列会在细胞内迅速同质化(“同质型”)。异质型与线粒体疾病、糖尿病和衰老密切相关。最近的研究表明,酵母细胞具有使 mtDNA 同质化的机制,使用与基因转换共用的常见 DNA 处理途径;也就是说,这两种遗传事件都是由双链断裂引发的,该断裂被加工成 3'单链尾巴。其中一条尾巴与受体双链 DNA 的互补序列碱基配对,形成 D 环(同源配对),在其中启动修复 DNA 合成以恢复断裂所丢失的序列。基因转换会产生序列多样性,具体取决于供体和受体序列之间的差异,尤其是当它发生在具有一些序列变异的 DNA 序列家族的许多拷贝之间时,如鸡的免疫球蛋白多样化。mtDNA 可以被视为一个序列家族,其中的成员往往通过高频自发突变而多样化。因此,有趣的是要确定双链断裂和 D 环形成为何以及如何诱导线粒体中的序列同质化以及核 DNA 中的序列多样化。我们将回顾 mtDNA 同质型的机制和作用,与核基因转换形成对比,后者使基因和基因组序列多样化,以提供线索来理解常见的 DNA 处理途径如何导致如此不同的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/211e/3924846/d16fd92e02c1/genes-02-00169f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验