Suppr超能文献

利用先验图像提高锥束 CT 中感兴趣区域的图像精度。

Improving image accuracy of region-of-interest in cone-beam CT using prior image.

机构信息

Korea Advanced Institute of Science and Technology.

出版信息

J Appl Clin Med Phys. 2014 Mar 6;15(2):4628. doi: 10.1120/jacmp.v15i2.4628.

Abstract

In diagnostic follow-ups of diseases, such as calcium scoring in kidney or fat content assessment in liver using repeated CT scans, quantitatively accurate and consistent CT values are desirable at a low cost of radiation dose to the patient. Region of-interest (ROI) imaging technique is considered a reasonable dose reduction method in CT scans for its shielding geometry outside the ROI. However, image artifacts in the reconstructed images caused by missing data outside the ROI may degrade overall image quality and, more importantly, can decrease image accuracy of the ROI substantially. In this study, we propose a method to increase image accuracy of the ROI and to reduce imaging radiation dose via utilizing the outside ROI data from prior scans in the repeated CT applications. We performed both numerical and experimental studies to validate our proposed method. In a numerical study, we used an XCAT phantom with its liver and stomach changing their sizes from one scan to another. Image accuracy of the liver has been improved as the error decreased from 44.4 HU to -0.1 HU by the proposed method, compared to an existing method of data extrapolation to compensate for the missing data outside the ROI. Repeated cone-beam CT (CBCT) images of a patient who went through daily CBCT scans for radiation therapy were also used to demonstrate the performance of the proposed method experimentally. The results showed improved image accuracy inside the ROI. The magnitude of error decreased from -73.2 HU to 18 HU, and effectively reduced image artifacts throughout the entire image.

摘要

在疾病的诊断随访中,例如使用重复 CT 扫描对肾脏中的钙评分或肝脏中的脂肪含量进行评估,需要以低剂量辐射的代价获得定量准确且一致的 CT 值。在 CT 扫描中,感兴趣区域(ROI)成像技术被认为是一种合理的降低剂量的方法,因为它在 ROI 之外具有屏蔽几何形状。然而,由于 ROI 之外的数据缺失,重建图像中的图像伪影可能会降低整体图像质量,更重要的是,会大大降低 ROI 的图像准确性。在这项研究中,我们提出了一种通过在重复 CT 应用中利用来自先前扫描的 ROI 外部数据来提高 ROI 图像准确性和降低成像辐射剂量的方法。我们进行了数值和实验研究来验证我们提出的方法。在数值研究中,我们使用了带有肝脏和胃部的 XCAT 体模,它们的大小从一次扫描到另一次扫描都在变化。与现有的 ROI 外部数据外推方法相比,通过我们提出的方法,肝脏的图像准确性得到了提高,误差从 44.4 HU 降低到-0.1 HU。还使用了一位接受日常 CBCT 放射治疗的患者的重复锥形束 CT(CBCT)图像来实验证明该方法的性能。结果表明,ROI 内的图像准确性得到了提高。误差幅度从-73.2 HU 降低到 18 HU,并且有效地减少了整个图像中的图像伪影。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ed/5875472/cbb4b38105f4/ACM2-15-252-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验