Suppr超能文献

基于计划 CT 的放射治疗锥形束 CT 定量成像:初步临床研究。

Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: first patient studies.

机构信息

The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Med Phys. 2012 Apr;39(4):1991-2000. doi: 10.1118/1.3693050.

Abstract

PURPOSE

Quantitative cone-beam CT (CBCT) imaging is on increasing demand for high-performance image guided radiation therapy (IGRT). However, the current CBCT has poor image qualities mainly due to scatter contamination. Its current clinical application is therefore limited to patient setup based on only bony structures. To improve CBCT imaging for quantitative use, we recently proposed a correction method using planning CT (pCT) as the prior knowledge. Promising phantom results have been obtained on a tabletop CBCT system, using a correction scheme with rigid registration and without iterations. More challenges arise in clinical implementations of our method, especially because patients have large organ deformation in different scans. In this paper, we propose an improved framework to extend our method from bench to bedside by including several new components.

METHODS

The basic principle of our correction algorithm is to estimate the primary signals of CBCT projections via forward projection on the pCT image, and then to obtain the low-frequency errors in CBCT raw projections by subtracting the estimated primary signals and low-pass filtering. We improve the algorithm by using deformable registration to minimize the geometry difference between the pCT and the CBCT images. Since the registration performance relies on the accuracy of the CBCT image, we design an optional iterative scheme to update the CBCT image used in the registration. Large correction errors result from the mismatched objects in the pCT and the CBCT scans. Another optional step of gas pocket and couch matching is added into the framework to reduce these effects.

RESULTS

The proposed method is evaluated on four prostate patients, of which two cases are presented in detail to investigate the method performance for a large variety of patient geometry in clinical practice. The first patient has small anatomical changes from the planning to the treatment room. Our algorithm works well even without the optional iterations and the gas pocket and couch matching. The image correction on the second patient is more challenging due to the effects of gas pockets and attenuating couch. The improved framework with all new components is used to fully evaluate the correction performance. The enhanced image quality has been evaluated using mean CT number and spatial nonuniformity (SNU) error as well as contrast improvement factor. If the pCT image is considered as the ground truth, on the four patients, the overall mean CT number error is reduced from over 300 HU to below 16 HU in the selected regions of interest (ROIs), and the SNU error is suppressed from over 18% to below 2%. The average soft-tissue contrast is improved by an average factor of 2.6.

CONCLUSIONS

We further improve our pCT-based CBCT correction algorithm for clinical use. Superior correction performance has been demonstrated on four patient studies. By providing quantitative CBCT images, our approach significantly increases the accuracy of advanced CBCT-based clinical applications for IGRT.

摘要

目的

定量锥形束 CT(CBCT)成像是高性能图像引导放射治疗(IGRT)日益增长的需求。然而,目前的 CBCT 由于散射污染,图像质量较差。因此,其目前的临床应用仅限于仅基于骨性结构的患者定位。为了提高 CBCT 成像的定量应用,我们最近提出了一种使用计划 CT(pCT)作为先验知识的校正方法。在台式 CBCT 系统上,使用具有刚性配准且无需迭代的校正方案,已经获得了有前途的体模结果。在我们方法的临床实施中出现了更多的挑战,特别是因为患者在不同扫描中有较大的器官变形。在本文中,我们提出了一个改进的框架,通过包括几个新组件,将我们的方法从实验室扩展到床边。

方法

我们校正算法的基本原理是通过在 pCT 图像上进行正向投影来估计 CBCT 投影的原始信号,然后通过减去估计的原始信号和低通滤波来获得 CBCT 原始投影中的低频误差。我们通过使用变形配准来最小化 pCT 和 CBCT 图像之间的几何差异来改进算法。由于注册性能取决于 CBCT 图像的准确性,因此我们设计了一个可选的迭代方案来更新用于注册的 CBCT 图像。来自 pCT 和 CBCT 扫描中不匹配物体的较大校正误差。框架中添加了可选的气袋和床匹配步骤,以减少这些影响。

结果

该方法在 4 名前列腺患者中进行了评估,其中详细介绍了 2 个病例,以研究该方法在临床实践中对各种患者几何形状的性能。第一个患者从计划室到治疗室的解剖结构变化很小。我们的算法甚至在没有可选迭代和气袋和床匹配的情况下也能很好地工作。由于气袋和衰减床的影响,第二个患者的图像校正更具挑战性。使用所有新组件的改进框架来全面评估校正性能。使用平均 CT 值和空间不均匀性(SNU)误差以及对比度改善因子来评估增强后的图像质量。如果将 pCT 图像视为基准,则在 4 名患者中,所选感兴趣区域(ROI)的总体平均 CT 值误差从超过 300 HU 降低到低于 16 HU,SNU 误差从超过 18%降低到低于 2%。平均软组织对比度提高了平均 2.6 倍。

结论

我们进一步改进了基于 pCT 的 CBCT 校正算法,以用于临床应用。在 4 名患者的研究中,已经证明了更好的校正性能。通过提供定量 CBCT 图像,我们的方法显著提高了基于先进 CBCT 的 IGRT 临床应用的准确性。

相似文献

3
Planning CT-guided robust and fast cone-beam CT scatter correction using a local filtration technique.
Med Phys. 2021 Nov;48(11):6832-6843. doi: 10.1002/mp.15299. Epub 2021 Oct 26.
6
Image-domain shading correction for cone-beam CT without prior patient information.
J Appl Clin Med Phys. 2015 Nov 8;16(6):65-75. doi: 10.1120/jacmp.v16i6.5424.
8
Scatter correction for cone-beam CT in radiation therapy.
Med Phys. 2009 Jun;36(6):2258-68. doi: 10.1118/1.3130047.
10
Fast shading correction for cone beam CT in radiation therapy via sparse sampling on planning CT.
Med Phys. 2017 May;44(5):1796-1808. doi: 10.1002/mp.12190. Epub 2017 Apr 17.

引用本文的文献

2
Minimum imaging dose for deep learning-based pelvic synthetic computed tomography generation from cone beam images.
Phys Imaging Radiat Oncol. 2024 Mar 22;30:100569. doi: 10.1016/j.phro.2024.100569. eCollection 2024 Apr.
3
Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy.
Front Oncol. 2022 Oct 27;12:942016. doi: 10.3389/fonc.2022.942016. eCollection 2022.
6
Comparison of Supervised and Unsupervised Approaches for the Generation of Synthetic CT from Cone-Beam CT.
Diagnostics (Basel). 2021 Aug 9;11(8):1435. doi: 10.3390/diagnostics11081435.
7
Evaluation of an scatter correction algorithm for cone-beam computed tomography based range and dose calculations in proton therapy.
Phys Imaging Radiat Oncol. 2020 Oct 27;16:89-94. doi: 10.1016/j.phro.2020.09.014. eCollection 2020 Oct.
9
A Patch-based CBCT Scatter Artifact Correction Using Prior CT.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10132. doi: 10.1117/12.2253935. Epub 2017 Mar 9.
10
Improving Image Quality of Cone-Beam CT Using Alternating Regression Forest.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10573. doi: 10.1117/12.2292886. Epub 2018 Mar 9.

本文引用的文献

2
On a PCA-based lung motion model.
Phys Med Biol. 2011 Sep 21;56(18):6009-30. doi: 10.1088/0031-9155/56/18/015. Epub 2011 Aug 24.
3
Cone-beam CT-based delineation of stereotactic lung targets: the influence of image modality and target size on interobserver variability.
Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):e265-72. doi: 10.1016/j.ijrobp.2011.03.042. Epub 2011 May 27.
4
Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.
Phys Med Biol. 2011 Feb 21;56(4):1015-30. doi: 10.1088/0031-9155/56/4/009. Epub 2011 Jan 21.
8
Scatter correction method for x-ray CT using primary modulation: phantom studies.
Med Phys. 2010 Feb;37(2):934-46. doi: 10.1118/1.3298014.
9
Implementation and evaluation of various demons deformable image registration algorithms on a GPU.
Phys Med Biol. 2010 Jan 7;55(1):207-19. doi: 10.1088/0031-9155/55/1/012.
10
Scatter correction for cone-beam CT in radiation therapy.
Med Phys. 2009 Jun;36(6):2258-68. doi: 10.1118/1.3130047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验