Suppr超能文献

基质金属蛋白酶介导的基质降解对三维聚乙二醇水凝胶中胶质母细胞瘤细胞行为的影响

Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.

作者信息

Wang Christine, Tong Xinming, Jiang Xinyi, Yang Fan

机构信息

Department of Bioengineering, Stanford University, Stanford, California, 94305.

Department of Orthopaedic Surgery, Stanford University, Stanford, California, 94305.

出版信息

J Biomed Mater Res A. 2017 Mar;105(3):770-778. doi: 10.1002/jbm.a.35947. Epub 2016 Nov 18.

Abstract

Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with median survival of 12 months. To improve clinical outcomes, it is critical to develop in vitro models that support GBM proliferation and invasion for deciphering tumor progression and screening drug candidates. A key hallmark of GBM cells is their extreme invasiveness, a process mediated by matrix metalloproteinase (MMP)-mediated degradation of the extracellular matrix. We recently reported the development of a MMP-degradable, poly(ethylene-glycol)-based hydrogel platform for culturing GBM cells. In the present study, we modulated the percentage of MMP-degradable crosslinks in 3D hydrogels to analyze the effects of MMP-degradability on GBM fates. Using an immortalized GBM cell line (U87) as a model cell type, our results showed that MMP-degradability was not required for supporting GBM proliferation. All hydrogel formulations supported robust GBM proliferation, up to 10 fold after 14 days. However, MMP-degradability was essential for facilitating tumor spreading, and 50% MMP-degradable hydrogels were sufficient to enable both robust tumor cell proliferation and spreading in 3D. The findings of this study highlight the importance of modulating MMP-degradability in engineering 3D in vitro brain cancer models and may be applied for engineering in vitro models for other cancer types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 770-778, 2017.

摘要

胶质母细胞瘤(GBM)是最常见且侵袭性最强的原发性脑肿瘤形式,中位生存期为12个月。为改善临床结果,开发支持GBM增殖和侵袭的体外模型以解读肿瘤进展并筛选候选药物至关重要。GBM细胞的一个关键特征是其极强的侵袭性,这一过程由基质金属蛋白酶(MMP)介导的细胞外基质降解所介导。我们最近报道了一种用于培养GBM细胞的基于聚乙二醇的MMP可降解水凝胶平台的开发。在本研究中,我们调节了三维水凝胶中MMP可降解交联的百分比,以分析MMP可降解性对GBM命运的影响。使用永生化GBM细胞系(U87)作为模型细胞类型,我们的结果表明,支持GBM增殖并不需要MMP可降解性。所有水凝胶配方都支持GBM的强劲增殖,14天后增殖可达10倍。然而,MMP可降解性对于促进肿瘤扩散至关重要,50% MMP可降解的水凝胶足以在三维环境中实现强劲的肿瘤细胞增殖和扩散。本研究结果突出了在构建三维体外脑癌模型中调节MMP可降解性的重要性,并且可能应用于构建其他癌症类型的体外模型。© 2016威利期刊公司。《生物医学材料研究杂志》A部分:第105A卷:770 - 778页,2017年。

相似文献

1
Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.
J Biomed Mater Res A. 2017 Mar;105(3):770-778. doi: 10.1002/jbm.a.35947. Epub 2016 Nov 18.
3
Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
Acta Biomater. 2021 Sep 15;132:437-447. doi: 10.1016/j.actbio.2021.05.005. Epub 2021 May 16.
4
Quinacrine Mediated Sensitization of Glioblastoma (GBM) Cells to TRAIL through MMP-Sensitive PEG Hydrogel Carriers.
Macromol Biosci. 2017 Feb;17(2). doi: 10.1002/mabi.201600267. Epub 2016 Oct 20.
5
Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels.
Tissue Eng Part A. 2021 Mar;27(5-6):390-401. doi: 10.1089/ten.TEA.2020.0110. Epub 2020 Nov 6.
8
Deciphering the relative roles of matrix metalloproteinase- and plasmin-mediated matrix degradation during capillary morphogenesis using engineered hydrogels.
J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2507-2516. doi: 10.1002/jbm.b.34341. Epub 2019 Feb 19.

引用本文的文献

1
Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.
In Vitro Model. 2023 Jan 27;2(1-2):1-23. doi: 10.1007/s44164-023-00043-2. eCollection 2023 Apr.
2
Therapeutic Implications of Targeting YY1 in Glioblastoma.
Cancers (Basel). 2024 May 30;16(11):2074. doi: 10.3390/cancers16112074.
3
Statistical optimization of hydrazone-crosslinked hyaluronic acid hydrogels for protein delivery.
J Mater Chem B. 2024 Mar 6;12(10):2523-2536. doi: 10.1039/d3tb01588b.
6
The Repression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel.
Basic Clin Neurosci. 2021 Nov-Dec;12(6):737-744. doi: 10.32598/bcn.2021.1693.1. Epub 2021 Nov 1.
7
Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models.
Int J Mol Sci. 2022 Feb 28;23(5):2662. doi: 10.3390/ijms23052662.
8
Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma.
Adv Healthc Mater. 2022 Feb;11(4):e2101956. doi: 10.1002/adhm.202101956. Epub 2021 Dec 29.
9
Injectable biomaterials for treatment of glioblastoma.
Adv Mater Interfaces. 2020 Oct 22;7(20). doi: 10.1002/admi.202001055. Epub 2020 Aug 30.
10
The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells.
Front Oncol. 2021 Jan 8;10:603738. doi: 10.3389/fonc.2020.603738. eCollection 2020.

本文引用的文献

1
Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion.
Ann Biomed Eng. 2015 Aug;43(8):1965-77. doi: 10.1007/s10439-014-1223-1. Epub 2014 Dec 17.
2
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
3
A neurocentric perspective on glioma invasion.
Nat Rev Neurosci. 2014 Jul;15(7):455-65. doi: 10.1038/nrn3765.
5
Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.
Biomaterials. 2013 Oct;34(30):7408-17. doi: 10.1016/j.biomaterials.2013.06.024. Epub 2013 Jul 1.
6
Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy.
J Biomed Mater Res A. 2013 Dec;101(12):3404-15. doi: 10.1002/jbm.a.34637. Epub 2013 Apr 5.
7
Review of MR elastography applications and recent developments.
J Magn Reson Imaging. 2012 Oct;36(4):757-74. doi: 10.1002/jmri.23597.
9
Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform.
Biomaterials. 2011 Nov;32(31):7913-23. doi: 10.1016/j.biomaterials.2011.07.005. Epub 2011 Aug 5.
10
The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels.
Biomaterials. 2011 May;32(14):3564-74. doi: 10.1016/j.biomaterials.2011.01.064. Epub 2011 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验