Diabetes and Obesity Research Center (G.A.K., K.R.S., B.T., T.H., R.E.P.) Sanford-Burnham Medical Research Institute, Orlando, Florida 32827; Translational Research Institute for Metabolism and Diabetes (G.A.K., R.E.P.), Florida Hospital, Orlando, Florida 32804; and Translational Science (B.T.), Cardiovascular and Metabolic Disease, Mölndal, AstraZeneca, Sweden.
Endocrinology. 2014 Jun;155(6):2112-21. doi: 10.1210/en.2013-2015. Epub 2014 Apr 8.
β-Cells rapidly secrete insulin in response to acute increases in plasma glucose but, upon further continuous exposure to glucose, insulin secretion progressively decreases. Although the mechanisms are unclear, this mode of regulation suggests the presence of a time-dependent glucosensory system that temporarily attenuates insulin secretion. Interestingly, early-stage β-cell dysfunction is often characterized by basal (ie, fasting) insulin hypersecretion, suggesting a disruption of these related mechanisms. Because sweet taste receptors (STRs) on β-cells are implicated in the regulation of insulin secretion and glucose is a bona fide STR ligand, we tested whether STRs mediate this sensory mechanism and participate in the regulation of basal insulin secretion. We used mice lacking STR signaling (T1R2(-/-) knockout) and pharmacologic inhibition of STRs in human islets. Mouse and human islets deprived of STR signaling hypersecrete insulin at short-term fasting glucose concentrations. Accordingly, 5-hour fasted T1R2(-/-) mice have increased plasma insulin and lower glucose. Exposure of isolated wild-type islets to elevated glucose levels reduced STR expression, whereas islets from diabetic (db/db) or diet-induced obese mouse models show similar down-regulation. This transcriptional reprogramming in response to hyperglycemia correlates with reduced STR function in these mouse models, leading to insulin hypersecretion. These findings reveal a novel mechanism by which insulin secretion is physiologically regulated by STRs and also suggest that, during the development of diabetes, STR function is compromised by hyperglycemia leading to hyperinsulinemia. These observations further suggest that STRs might be a promising therapeutic target to prevent and treat type 2 diabetes.
β 细胞在血浆葡萄糖急剧增加时会迅速分泌胰岛素,但在进一步持续暴露于葡萄糖时,胰岛素分泌会逐渐减少。虽然机制尚不清楚,但这种调节模式表明存在一种依赖时间的葡萄糖感受器系统,它会暂时减弱胰岛素分泌。有趣的是,β 细胞早期功能障碍的特征通常是基础(即空腹)胰岛素分泌过多,这表明这些相关机制受到了破坏。由于 β 细胞上的甜味受体(STR)参与了胰岛素分泌的调节,而葡萄糖是真正的 STR 配体,因此我们测试了 STR 是否介导这种感觉机制并参与基础胰岛素分泌的调节。我们使用缺乏 STR 信号的小鼠(T1R2(-/-) 敲除)和人胰岛中 STR 的药理学抑制来进行研究。缺乏 STR 信号的小鼠和人胰岛在短期禁食葡萄糖浓度下会过度分泌胰岛素。因此,禁食 5 小时的 T1R2(-/-) 小鼠具有更高的血浆胰岛素和更低的血糖。将分离的野生型胰岛暴露于高葡萄糖水平会降低 STR 表达,而糖尿病(db/db)或饮食诱导肥胖小鼠模型的胰岛则表现出类似的下调。这种对高血糖的转录重编程与这些小鼠模型中 STR 功能的降低相关,导致胰岛素分泌过多。这些发现揭示了一种新的机制,即 STR 通过生理调节胰岛素分泌,并且还表明,在糖尿病的发展过程中,由于高血糖,STR 功能受损,导致高胰岛素血症。这些观察结果进一步表明,STR 可能是预防和治疗 2 型糖尿病的有前途的治疗靶点。