Dohnalová K, Gregorkiewicz T, Kůsová K
Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, The Netherlands.
J Phys Condens Matter. 2014 Apr 30;26(17):173201. doi: 10.1088/0953-8984/26/17/173201. Epub 2014 Apr 8.
Silicon quantum dots (SiQDs) hold great promise for many future technologies. Silicon is already at the core of photovoltaics and microelectronics, and SiQDs are capable of efficient light emission and amplification. This is crucial for the development of the next technological frontiers-silicon photonics and optoelectronics. Unlike any other quantum dots (QDs), SiQDs are made of non-toxic and abundant material, offering one of the spectrally broadest emission tunabilities accessible with semiconductor QDs and allowing for tailored radiative rates over many orders of magnitude. This extraordinary flexibility of optical properties is achieved via a combination of the spatial confinement of carriers and the strong influence of surface chemistry. The complex physics of this material, which is still being unraveled, leads to new effects, opening up new opportunities for applications. In this review we summarize the latest progress in this fascinating research field, with special attention given to surface-induced effects, such as the emergence of direct bandgap transitions, and collective effects in densely packed QDs, such as space separated quantum cutting.
硅量子点(SiQDs)在许多未来技术中具有巨大潜力。硅已经是光伏和微电子的核心,并且硅量子点能够实现高效的光发射和放大。这对于下一个技术前沿——硅光子学和光电子学的发展至关重要。与任何其他量子点(QDs)不同,硅量子点由无毒且丰富的材料制成,具有半导体量子点可实现的最宽光谱发射可调性之一,并允许在多个数量级上定制辐射速率。这种光学性质的非凡灵活性是通过载流子的空间限制和表面化学的强烈影响相结合来实现的。这种材料的复杂物理性质仍在被揭示,它会导致新的效应,为应用开辟新的机会。在这篇综述中,我们总结了这个迷人研究领域的最新进展,特别关注表面诱导效应,如直接带隙跃迁的出现,以及紧密堆积量子点中的集体效应,如空间分离量子切割。