Suppr超能文献

视觉搜索中的特征线性组合。

Features in visual search combine linearly.

作者信息

Pramod R T, Arun S P

机构信息

Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India.

出版信息

J Vis. 2014 Apr 8;14(4):6. doi: 10.1167/14.4.6.

Abstract

Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features (intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and co-activation models (based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features-in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search.

摘要

诸如线条方向和长度等单一特征已知可引导视觉搜索,但对于多种特征在搜索中如何组合,人们了解得相对较少。为了解决这个问题,我们研究了从干扰项中搜索在多种特征(强度、长度、方向)上不同的目标与搜索在每个单独特征上不同的目标之间的关系。我们测试了竞争模型(基于反应时间)和共同激活模型(基于反应时间的倒数)预测多种特征搜索的能力。多种特征搜索最好由一个特征信息线性组合的共同激活模型来解释(r = 0.95)。这一结果与这些特征是可分离的经典发现一致,即主观差异评分呈线性相加。然后我们重复了经典发现,即矩形的长度和宽度是整体特征——换句话说,它们在视觉搜索中非线性组合。然而,令我们惊讶的是,当将宽高比作为一个额外特征纳入时,长度和宽度线性组合,并且这个模型优于所有其他模型。因此,当与宽高比一起考虑时,矩形的长度和宽度变得可分离。这一发现预测,涉及具有相同宽高比形状的搜索应该比形状宽高比不同的搜索更困难。我们在各种形状上证实了这一预测。我们得出结论,视觉搜索中的特征线性共同激活,并首次证明宽高比是引导视觉搜索的一个新特征。

相似文献

3
Turning visual search time on its head.彻底改变视觉搜索时间。
Vision Res. 2012 Dec 1;74:86-92. doi: 10.1016/j.visres.2012.04.005. Epub 2012 Apr 25.
5
Saccadic selectivity in complex visual search displays.复杂视觉搜索显示中的扫视选择性。
Vision Res. 2006 Jun;46(12):1886-900. doi: 10.1016/j.visres.2005.12.003. Epub 2006 Jan 30.
7
Parallel pattern processing and visual agnosia.平行模式处理与视觉失认症
Can J Psychol. 1992 Sep;46(3):377-416. doi: 10.1037/h0084329.
9

引用本文的文献

3
Using compositionality to understand parts in whole objects.利用组合性理解整体对象中的部分。
Eur J Neurosci. 2022 Aug;56(4):4378-4392. doi: 10.1111/ejn.15746. Epub 2022 Jul 20.
9
Reading Increases the Compositionality of Visual Word Representations.阅读增加视觉词汇表示的组合性。
Psychol Sci. 2019 Dec;30(12):1707-1723. doi: 10.1177/0956797619881134. Epub 2019 Nov 7.
10
Specifying the precision of guiding features for visual search.指定视觉搜索引导特征的精度。
J Exp Psychol Hum Percept Perform. 2019 Sep;45(9):1248-1264. doi: 10.1037/xhp0000668. Epub 2019 Jun 20.

本文引用的文献

2
Turning visual search time on its head.彻底改变视觉搜索时间。
Vision Res. 2012 Dec 1;74:86-92. doi: 10.1016/j.visres.2012.04.005. Epub 2012 Apr 25.
4
Situating visual search.定位视觉搜索。
Vision Res. 2011 Jul 1;51(13):1526-37. doi: 10.1016/j.visres.2010.09.003. Epub 2010 Sep 17.
8
A simple two-stage model predicts response time distributions.一个简单的两阶段模型可预测响应时间分布。
J Physiol. 2009 Aug 15;587(Pt 16):4051-62. doi: 10.1113/jphysiol.2009.173955. Epub 2009 Jun 29.
9
Linearly additive shape and color signals in monkey inferotemporal cortex.猴颞下皮质中的线性加性形状和颜色信号
J Neurophysiol. 2009 Apr;101(4):1867-75. doi: 10.1152/jn.90650.2008. Epub 2009 Jan 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验