Aix-Marseille-Université, Centre National de la Recherche Scientifique, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Unité Mixte de Recherche 7286, 13344 Marseille France, and International Center for Molecular Physiology (Dnipropetrovsk Division), National Academy of Sciences of Ukraine, 01024 Kiev, Ukraine.
J Neurosci. 2014 Apr 9;34(15):5233-44. doi: 10.1523/JNEUROSCI.0057-14.2014.
Voltage-gated sodium (Nav) channels play a central role in gastrointestinal physiology because they transmit depolarizing impulses in enteric neurons, thereby enabling the coordination of intestinal motility. However, little is known about the ion channel machinery that specifies firing pattern of enteric neurons. Here, we used in situ patch-clamp recording of myenteric neurons from mice to define functionally the Nav channel subtypes responsible for the electrical signature of myenteric neurons. We found that mouse myenteric neurons exhibit two types of tetrodotoxin-resistant Na(+) currents: an early inactivating Na(+) current (INaT) and a persistent Na(+) current (INaP). INaT was encountered in all myenteric neurons, whereas INaP was preferentially found in Dogiel type II sensory neurons. Knock-out mouse studies, in combination with pharmacological assays, indicate that INaT is carried by the Scn5a-encoded "cardiac" Nav1.5, whereas INaP is attributed to the Scn11a-encoded Nav1.9. Current-clamp experiments show that Nav1.9 flows at subthreshold voltages, generating tonic firing. In addition, action potential (AP) clamp reveals that Nav1.5 contributes to the upstroke velocity of APs, whereas Nav1.9, which remains active during the falling phase, opposes AP repolarization. We developed a computational model of a Dogiel type II myenteric neuron that successfully reproduces all experimentally observed phenomena and highlights the differential roles of Nav1.5 and Nav1.9 in the control of excitability. Our data illustrate how excitability can be finely tuned to provide specific firing templates by the selective deployment of Nav1.5 and Nav1.9 isoforms. We propose that Nav-dependent ENS disorders of excitability may play important roles in the pathogenesis of digestive diseases.
电压门控钠离子(Nav)通道在胃肠道生理学中发挥着核心作用,因为它们在肠神经元中传递去极化冲动,从而协调肠道运动。然而,对于特定肠神经元放电模式的离子通道机制知之甚少。在这里,我们使用来自小鼠的肌间神经丛神经元的原位膜片钳记录来定义负责肌间神经元电特征的 Nav 通道亚型。我们发现,小鼠肌间神经元表现出两种类型的河豚毒素抗性 Na+电流:早期失活的 Na+电流(INaT)和持续的 Na+电流(INaP)。INaT 在所有肌间神经元中都存在,而 INaP 则优先存在于 Dogiel 型 II 感觉神经元中。敲除小鼠研究与药理学测定相结合表明,INaT 由 Scn5a 编码的“心脏”Nav1.5 携带,而 INaP 归因于 Scn11a 编码的 Nav1.9。电流钳实验表明,Nav1.9 在亚阈电压下流动,产生紧张性放电。此外,动作电位(AP)钳揭示了 Nav1.5 有助于 AP 上升速度,而在下降相仍保持活跃的 Nav1.9 则反对 AP 复极化。我们开发了一个 Dogiel 型 II 肌间神经元的计算模型,该模型成功地再现了所有实验观察到的现象,并突出了 Nav1.5 和 Nav1.9 在兴奋性控制中的差异作用。我们的数据说明了如何通过选择性部署 Nav1.5 和 Nav1.9 同工型来精细调节兴奋性,以提供特定的放电模板。我们提出,依赖 Nav 的肠神经系统兴奋性障碍可能在消化疾病的发病机制中发挥重要作用。