The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, 35 Centerra Parkway, Lebanon, NH 03766, USA.
BMJ. 2014 Apr 10;348:g2392. doi: 10.1136/bmj.g2392.
To compare the performance of two new approaches to risk adjustment that are free of the influence of observational intensity with methods that depend on diagnoses listed in administrative databases.
Administrative data from the US Medicare program for services provided in 2007 among 306 US hospital referral regions.
Cross sectional analysis.
20% sample of fee for service Medicare beneficiaries residing in one of 306 hospital referral regions in the United States in 2007 (n = 5,153,877).
The effect of health risk adjustment on age, sex, and race adjusted mortality and spending rates among hospital referral regions using four indices: the standard Centers for Medicare and Medicaid Services--Hierarchical Condition Categories (HCC) index used by the US Medicare program (calculated from diagnoses listed in Medicare's administrative database); a visit corrected HCC index (to reduce the effects of observational intensity on frequency of diagnoses); a poverty index (based on US census); and a population health index (calculated using data on incidence of hip fractures and strokes, and responses from a population based annual survey of health from the Centers for Disease Control and Prevention).
Estimated variation in age, sex, and race adjusted mortality rates across hospital referral regions was reduced using the indices based on population health, poverty, and visit corrected HCC, but increased using the standard HCC index. Most of the residual variation in age, sex, and race adjusted mortality was explained (in terms of weighted R2) by the population health index: R2=0.65. The other indices explained less: R2=0.20 for the visit corrected HCC index; 0.19 for the poverty index, and 0.02 for the standard HCC index. The residual variation in age, sex, race, and price adjusted spending per capita across the 306 hospital referral regions explained by the indices (in terms of weighted R2) were 0.50 for the standard HCC index, 0.21 for the population health index, 0.12 for the poverty index, and 0.07 for the visit corrected HCC index, implying that only a modest amount of the variation in spending can be explained by factors most closely related to mortality. Further, once the HCC index is visit corrected it accounts for almost none of the residual variation in age, sex, and race adjusted spending.
Health risk adjustment using either the poverty index or the population health index performed substantially better in terms of explaining actual mortality than the indices that relied on diagnoses from administrative databases; the population health index explained the majority of residual variation in age, sex, and race adjusted mortality. Owing to the influence of observational intensity on diagnoses from administrative databases, the standard HCC index over-adjusts for regional differences in spending. Research to improve health risk adjustment methods should focus on developing measures of risk that do not depend on observation influenced diagnoses recorded in administrative databases.
比较两种新的风险调整方法的性能,这两种方法不受观察强度的影响,而依赖于行政数据库中列出的诊断方法。
来自美国医疗保险计划 2007 年在 306 个美国医院转诊区提供的服务的行政数据。
横断面分析。
2007 年居住在美国 306 个医院转诊区之一的服务费用医疗保险受益人的 20%样本(n=5153877)。
使用四个指数来衡量医院转诊区的健康风险调整对年龄、性别和种族调整后的死亡率和支出率的影响:美国医疗保险计划使用的标准医疗保健和医疗补助服务-分层条件类别(HCC)指数(根据医疗保险行政数据库中列出的诊断计算);访问纠正 HCC 指数(减少观察强度对诊断频率的影响);贫困指数(基于美国人口普查);以及人口健康指数(使用髋部骨折和中风的发病率数据和疾病预防控制中心基于人群的年度健康调查的回复计算)。
使用基于人口健康、贫困和访问纠正 HCC 的指数,估计医院转诊区之间年龄、性别和种族调整后死亡率的差异有所减少,但使用标准 HCC 指数,死亡率的差异有所增加。人口健康指数解释了大部分年龄、性别和种族调整后死亡率的残余差异(用加权 R2 表示):R2=0.65。其他指数的解释力较小:访问纠正 HCC 指数为 R2=0.20;贫困指数为 R2=0.19;标准 HCC 指数为 R2=0.02。306 个医院转诊区之间按年龄、性别、种族和价格调整后的人均支出的残余差异(用加权 R2 表示)分别为标准 HCC 指数为 0.50;人口健康指数为 0.21;贫困指数为 0.12;访问纠正 HCC 指数为 0.07,这意味着只有相当一部分支出差异可以用最接近死亡率的因素来解释。此外,一旦 HCC 指数得到访问纠正,它几乎不能解释年龄、性别和种族调整后支出的任何残余差异。
在解释实际死亡率方面,使用贫困指数或人口健康指数进行健康风险调整的效果明显优于依赖行政数据库中诊断的指数;人口健康指数解释了年龄、性别和种族调整后死亡率的大部分残余差异。由于观察强度对行政数据库中诊断的影响,标准 HCC 指数过度调整了支出方面的区域差异。改善健康风险调整方法的研究应侧重于开发不依赖于行政数据库中记录的受观察影响的诊断的风险衡量标准。